mindquantum.simulator.Simulator

View Source On Gitee
class mindquantum.simulator.Simulator(backend, n_qubits=None, *args, seed=None, dtype=None, **kwargs)[source]

Quantum simulator that simulate quantum circuit.

Parameters
  • backend (str) – which backend you want. The supported backend can be found in SUPPORTED_SIMULATOR

  • n_qubits (int) – number of quantum simulator. Default: None.

  • seed (int) – the random seed for this simulator, if None, seed will generate by numpy.random.randint. Default: None.

  • dtype (mindquantum.dtype) – the data type of simulator. Default: None.

Raises

Examples

>>> from mindquantum.algorithm.library import qft
>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqvector', 2)
>>> sim.apply_circuit(qft(range(2)))
>>> sim.get_qs()
array([0.5+0.j, 0.5+0.j, 0.5+0.j, 0.5+0.j])
apply_circuit(circuit, pr=None)[source]

Apply a circuit on this simulator.

Parameters
Returns

MeasureResult or None, if the circuit has measure gate, then return a MeasureResult, otherwise return None.

Examples

>>> import numpy as np
>>> from mindquantum.core.circuit import Circuit
>>> from mindquantum.core.gates import H
>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqvector', 2)
>>> sim.apply_circuit(Circuit().un(H, 2))
>>> sim.apply_circuit(Circuit().ry('a', 0).ry('b', 1), np.array([1.1, 2.2]))
>>> sim
mqvector simulator with 2 qubits  (little endian).
Current quantum state:
-0.0721702531972066¦00⟩
-0.30090405886869676¦01⟩
0.22178317006196263¦10⟩
0.9246947752567126¦11⟩
>>> sim.apply_circuit(Circuit().measure(0).measure(1))
shots: 1
Keys: q1 q0│0.00     0.2         0.4         0.6         0.8         1.0
───────────┼───────────┴───────────┴───────────┴───────────┴───────────┴
         11│▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓

{'11': 1}
apply_gate(gate, pr=None, diff=False)[source]

Apply a gate on this simulator, can be a quantum gate or a measurement operator.

Parameters
Returns

int or None, if the gate if a measure gate, then return a collapsed state, Otherwise return None.

Raises
  • TypeError – if gate is not a BasicGate.

  • ValueError – if any qubit of gate is higher than simulator qubits.

  • ValueError – if gate is parameterized, but no parameter supplied.

  • TypeError – the pr is not a ParameterResolver if gate is parameterized.

Examples

>>> import numpy as np
>>> from mindquantum.core.gates import RY, Measure
>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqvector', 1)
>>> sim.apply_gate(RY('a').on(0), np.pi/2)
>>> sim.get_qs()
array([0.70710678+0.j, 0.70710678+0.j])
>>> sim.apply_gate(Measure().on(0))
1
>>> sim.get_qs()
array([0.+0.j, 1.+0.j])
apply_hamiltonian(hamiltonian: Hamiltonian)[source]

Apply hamiltonian to a simulator, this hamiltonian can be hermitian or non hermitian.

Note

The quantum state may be not a normalized quantum state after apply hamiltonian.

Parameters

hamiltonian (Hamiltonian) – the hamiltonian you want to apply.

Examples

>>> from mindquantum.core.circuit import Circuit
>>> from mindquantum.core.operators import QubitOperator, Hamiltonian
>>> from mindquantum.simulator import Simulator
>>> import scipy.sparse as sp
>>> sim = Simulator('mqvector', 1)
>>> sim.apply_circuit(Circuit().h(0))
>>> sim.get_qs()
array([0.70710678+0.j, 0.70710678+0.j])
>>> ham1 = Hamiltonian(QubitOperator('Z0'))
>>> sim.apply_hamiltonian(ham1)
>>> sim.get_qs()
array([ 0.70710678+0.j, -0.70710678+0.j])
>>> sim.reset()
>>> ham2 = Hamiltonian(sp.csr_matrix([[1, 2], [3, 4]]))
>>> sim.apply_hamiltonian(ham2)
>>> sim.get_qs()
array([1.+0.j, 3.+0.j])
astype(dtype, seed=None)[source]

Convert simulator to other data type.

Note

The quantum state will copied from origin simulator.

Parameters
  • dtype (mindquantum.dtype) – the data type of new simulator.

  • seed (int) – the seed of new simulator. Default: None.

copy()[source]

Copy this simulator.

Returns

Simulator, a copy version of this simulator.

Examples

>>> from mindquantum.core.gates import RX
>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqvector', 1)
>>> sim.apply_gate(RX(1).on(0))
>>> sim2 = sim.copy()
>>> sim2.apply_gate(RX(-1).on(0))
>>> sim2
mqvector simulator with 1 qubit (little endian).
Current quantum state:
1¦0⟩
property dtype

Get data type of simulator.

entropy()[source]

Calculate the von Neumann entropy of current quantum state.

Definition of von Neumann entropy \(S\) shown as below.

\[S(\rho) = -\text{tr}(\rho \ln \rho)\]

where \(\rho\) is density matrix.

Returns

numbers.Number, the von Neumann entropy of current quantum state.

Examples

>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqmatrix', 1)
>>> sim.set_qs([[0.5, 0], [0, 0.5]])
>>> sim.entropy()
0.6931471805599453
get_expectation(hamiltonian, circ_right=None, circ_left=None, simulator_left=None, pr=None)[source]

Get expectation of the given hamiltonian. The hamiltonian could be non hermitian.

This method is designed to calculate the expectation shown as below.

\[E = \left<\varphi\right|U_l^\dagger H U_r \left|\psi\right>\]

where \(U_l\) is circ_left, \(U_r\) is circ_right, \(H\) is hams and \(\left|\psi\right>\) is the current quantum state of this simulator, and \(\left|\varphi\right>\) is the quantum state of simulator_left.

Parameters
  • hamiltonian (Hamiltonian) – The hamiltonian you want to get expectation.

  • circ_right (Circuit) – The \(U_r\) circuit described above. If it is None, we will use empty circuit. Default: None.

  • circ_left (Circuit) – The \(U_l\) circuit described above. If it is None, then it will be the same as circ_right. Default: None.

  • simulator_left (Simulator) – The simulator that contains \(\left|\varphi\right>\). If None, then \(\left|\varphi\right>\) is assumed to be equals to \(\left|\psi\right>\). Default: None.

  • pr (Union[Dict[str, numbers.Number], ParameterResolver]) – the variable value of circuit. Default: None.

Returns

numbers.Number, the expectation value.

Examples

>>> from mindquantum.core.circuit import Circuit
>>> from mindquantum.core.operators import QubitOperator, Hamiltonian
>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqvector', 1)
>>> sim.apply_circuit(Circuit().ry(1.2, 0))
>>> ham = Hamiltonian(QubitOperator('Z0'))
>>> sim.get_expectation(ham)
(0.36235775447667357+0j)
>>> sim.get_expectation(ham, Circuit().rx('a', 0), Circuit().ry(2.3, 0), pr={'a': 2.4})
(-0.25463350745693886+0.8507316752782879j)
>>> sim1, sim2 = Simulator('mqvector', 1), Simulator('mqvector', 1)
>>> sim1.apply_circuit(Circuit().ry(1.2, 0).rx(2.4, 0))
>>> sim2.apply_circuit(Circuit().ry(1.2, 0).ry(2.3, 0))
>>> sim1.apply_hamiltonian(ham)
>>> from mindquantum.simulator import inner_product
>>> inner_product(sim2, sim1)
(-0.25463350745693886+0.8507316752782879j)
get_expectation_with_grad(hams, circ_right, circ_left=None, simulator_left=None, parallel_worker=None, pr_shift=False)[source]

Get a function that return the forward value and gradient w.r.t circuit parameters.

This method is designed to calculate the expectation and its gradient shown as below.

\[E = \left<\varphi\right|U_l^\dagger H U_r \left|\psi\right>\]

where \(U_l\) is circ_left, \(U_r\) is circ_right, \(H\) is hams and \(\left|\psi\right>\) is the current quantum state of this simulator, and \(\left|\varphi\right>\) is the quantum state of simulator_left.

Parameters
  • hams (Union[Hamiltonian, List[Hamiltonian]]) – A Hamiltonian or a list of Hamiltonian that need to get expectation.

  • circ_right (Circuit) – The \(U_r\) circuit described above.

  • circ_left (Circuit) – The \(U_l\) circuit described above. By default, this circuit will be none, and in this situation, \(U_l\) will be equals to \(U_r\). Default: None.

  • simulator_left (Simulator) – The simulator that contains \(\left|\varphi\right>\). If None, then \(\left|\varphi\right>\) is assumed to be equals to \(\left|\psi\right>\). Default: None.

  • parallel_worker (int) – The parallel worker numbers. The parallel workers can handle batch in parallel threads. Default: None.

  • pr_shift (bool) – Whether or not to use parameter-shift rule. Only available in "mqvector" simulator. It will be enabled automatically when circuit contains noise channel. Noted that not every gate uses the same shift value π/2, so the gradient of FSim gate and parameterized custom gate will be calculated by finite difference method with gap 0.001. Default: False.

Returns

GradOpsWrapper, a grad ops wrapper than contains information to generate this grad ops.

Examples

>>> import numpy as np
>>> from mindquantum.core.circuit import Circuit
>>> from mindquantum.core.operators import QubitOperator, Hamiltonian
>>> from mindquantum.simulator import Simulator
>>> circ = Circuit().ry('a', 0)
>>> ham = Hamiltonian(QubitOperator('Z0'))
>>> sim = Simulator('mqvector', 1)
>>> grad_ops = sim.get_expectation_with_grad(ham, circ)
>>> grad_ops(np.array([1.0]))
(array([[0.54030231+0.j]]), array([[[-0.84147098+0.j]]]))
>>> sim1 = Simulator('mqvector', 1)
>>> prep_circ = Circuit().h(0)
>>> ansatz = Circuit().ry('a', 0).rz('b', 0).ry('c', 0)
>>> sim1.apply_circuit(prep_circ)
>>> sim2 = Simulator('mqvector', 1)
>>> ham = Hamiltonian(QubitOperator(""))
>>> grad_ops = sim2.get_expectation_with_grad(ham, ansatz, Circuit(), simulator_left=sim1)
>>> f, g = grad_ops(np.array([7.902762e-01, 2.139225e-04, 7.795934e-01]))
>>> f
array([[0.99999989-7.52279618e-05j]])
get_partial_trace(obj_qubits)[source]

Calculate the partial trace of current density matrix.

Parameters

obj_qubits (Union[int, list[int]]) – Specific which qubits (subsystems) to trace over.

Returns

numpy.ndarray, the partial trace of current density matrix.

Examples

>>> from mindquantum.core.circuit import Circuit
>>> from mindquantum.simulator import Simulator
>>> circ = Circuit().h(0).x(1, 0)
>>> sim = Simulator('mqmatrix', 2)
>>> sim.apply_circuit(circ)
>>> mat = sim.get_partial_trace(0)
>>> mat
array([[0.5-0.j, 0. -0.j],
       [0. +0.j, 0.5-0.j]])
get_pure_state_vector()[source]

Get state vector if current density matrix is pure.

The relation between density matrix \(\rho\) and state vector \(\left| \psi \right>\) shown as below.

\[\rho = \left| \psi \right>\!\left< \psi \right|\]

Note that the state vector \(\left| \psi \right>\) may have an arbitrary global phase \(e^{i\phi}\).

Returns

numpy.ndarray, a state vector calculated from current density matrix.

Examples

>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqmatrix', 1)
>>> sim.set_qs([[0.5, 0.5], [0.5, 0.5]])
>>> sim.get_pure_state_vector()
array([0.70710678+0.j, 0.70710678+0.j])
get_qs(ket=False)[source]

Get current quantum state of this simulator.

Parameters

ket (bool) – Whether to return the quantum state in ket format or not. Default: False.

Returns

numpy.ndarray, the current quantum state.

Examples

>>> from mindquantum.algorithm.library import qft
>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqvector', 2)
>>> sim.apply_circuit(qft(range(2)))
>>> sim.get_qs()
array([0.5+0.j, 0.5+0.j, 0.5+0.j, 0.5+0.j])
property n_qubits

Get simulator qubit.

Returns

int, the qubit number of simulator.

purity()[source]

Calculate the purity of current quantum state.

Definition of purity \(\gamma\) shown as below.

\[\gamma \equiv \text{tr}(\rho^2)\]

where \(\rho\) is density matrix.

Returns

numbers.Number, the purity of current quantum state.

Examples

>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqmatrix', 1)
>>> sim.set_qs([[0.5, 0], [0, 0.5]])
>>> sim.purity()
0.5
reset()[source]

Reset simulator to zero state.

Examples

>>> from mindquantum.algorithm.library import qft
>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqvector', 2)
>>> sim.apply_circuit(qft(range(2)))
>>> sim.reset()
>>> sim.get_qs()
array([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j])
sampling(circuit, pr=None, shots=1, seed=None)[source]

Sample the measure qubit in circuit.

Sampling does not change the original quantum state of this simulator. The sampling results are represented in little-endian order by default (e.g., '01' means q1=0, q0=1). If big-endian order is needed, use MeasureResult.reverse_endian() method.

Parameters
  • circuit (Circuit) – The circuit that you want to evolve and sample.

  • pr (Union[None, dict, ParameterResolver]) – The parameter resolver for this circuit, if this circuit is a parameterized circuit. Default: None.

  • shots (int) – How many shots you want to sample this circuit. Default: 1.

  • seed (int) – Random seed for random sampling. If None, seed will be a random int number. Default: None.

Returns

MeasureResult, the measure result of sampling. The bit strings in the result are in little-endian order.

Examples

>>> from mindquantum.core.circuit import Circuit
>>> from mindquantum.core.gates import Measure
>>> from mindquantum.simulator import Simulator
>>> circ = Circuit().ry('a', 0).ry('b', 1)
>>> circ += Measure('q0_0').on(0)
>>> circ += Measure('q0_1').on(0)
>>> circ += Measure('q1').on(1)
>>> sim = Simulator('mqvector', circ.n_qubits)
>>> res = sim.sampling(circ, {'a': 1.1, 'b': 2.2}, shots=100, seed=42)
>>> res
shots: 100
Keys: q1 q0_1 q0_0│0.00   0.122       0.245       0.367        0.49       0.612
──────────────────┼───────────┴───────────┴───────────┴───────────┴───────────┴
               000│▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

               011│▒▒▒▒▒▒▒▒▒

               100│▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓

               111│▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

{'000': 18, '011': 9, '100': 49, '111': 24}
set_qs(quantum_state)[source]

Set quantum state for this simulation.

Parameters

quantum_state (numpy.ndarray) – the quantum state that you want.

Examples

>>> import numpy as np
>>> from mindquantum.simulator import Simulator
>>> sim = Simulator('mqvector', 1)
>>> sim.get_qs()
array([1.+0.j, 0.+0.j])
>>> sim.set_qs(np.array([1, 1]))
>>> sim.get_qs()
array([0.70710678+0.j, 0.70710678+0.j])
set_threads_number(number)[source]

Set maximum number of threads.

Parameters

number (int) – The thread number the simulator will use for thread pool.