mindquantum.algorithm.compiler.qs_decompose
- mindquantum.algorithm.compiler.qs_decompose(gate: QuantumGate, with_barrier: bool = False)[source]
Quantum Shannon decomposition for arbitrary-dimension unitary gate.
The number of CNOT gates in the decomposed circuit is:
\[O(4^n)\]For more detail, please refer to Synthesis of Quantum Logic Circuits.
- Parameters
gate (
QuantumGate
) – instance of quantum gate.with_barrier (bool) – whether add barriers into decomposed circuit.
- Returns
Circuit
, composed of 1-qubit gates and CNOT gates.
Examples
>>> import mindquantum as mq >>> from mindquantum.algorithm.compiler.decompose import qs_decompose >>> from scipy.stats import unitary_group >>> tqs = [1,2,3,6] # arbitrary qubit index order is OK >>> n = len(tqs) # qubit number >>> u = unitary_group.rvs(2 ** n, random_state=123) >>> g = mq.UnivMathGate('U', u).on(tqs) >>> circ = qs_decompose(g) >>> num_cnot = len([g for g in circ if isinstance(g, mq.XGate) and len(g.ctrl_qubits)==1]) >>> print('total gate number: {}, CNOT number: {}'.format(len(circ), num_cnot)) total gate number: 412, CNOT number: 180