mindearth.core.get_warmup_cosine_annealing_lr
- mindearth.core.get_warmup_cosine_annealing_lr(lr_init, steps_per_epoch, last_epoch, warmup_epochs=0, warmup_lr_init=0.0, eta_min=1e-06)[source]
Calculates learning rate base on cosine decay function. If warmup epoch is specified, the warmup epoch will be warmed up by linear annealing.
For the i-th step, the formula of computing cosine decayed_learning_rate[i] is:
\[decayed\_learning\_rate[i] = eta\_min + 0.5 * (lr\_init - eta\_min) * (1 + cos(\frac{current\_epoch}{last\_epoch}\pi))\]Where \(current\_epoch = floor(\frac{i}{steps\_per\_epoch})\).
- If warmup epoch is specified, for the i-th step in waramup epoch, the formula of computing
warmup_learning_rate[i] is:
\[warmup\_learning\_rate[i] = (lr\_init - warmup\_lr\_init) * i / warmup\_steps + warmup\_lr\_init\]- Parameters
lr_init (float) – init learning rate, positive float value.
steps_per_epoch (int) – number of steps to each epoch, positive int value.
last_epoch (int) – total epoch of training, positive int value.
warmup_epochs (int) – total epoch of warming up, default:0.
warmup_lr_init (float) – warmup init learning rate, default:0.0.
eta_min (float) – minimum learning rate, default: 1e-6.
- Returns
Numpy.array, learning rate array.
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> from mindearth import get_warmup_cosine_annealing_lr >>> lr_init = 0.001 >>> steps_per_epoch = 3 >>> last_epoch = 5 >>> warmup_epochs = 1 >>> lr = get_warmup_cosine_annealing_lr(lr_init, steps_per_epoch, last_epoch, warmup_epochs=warmup_epochs) >>> print(lr) [3.3333333e-04 6.6666666e-04 1.0000000e-03 9.0460398e-04 9.0460398e-04 9.0460398e-04 6.5485400e-04 6.5485400e-04 6.5485400e-04 3.4614600e-04 3.4614600e-04 3.4614600e-04 9.6396012e-05 9.6396012e-05 9.6396012e-05]