mindspore_gl.graph.graph_csr_data
- mindspore_gl.graph.graph_csr_data(src_idx, dst_idx, n_nodes, n_edges, node_feat=None, node_label=None, train_mask=None, val_mask=None, test_mask=None, rerank=False)[source]
Convert the entire graph in the COO format to the CSR format.
- Parameters
src_idx (Union[Tensor, numpy.ndarray]) – tensor with shape \((N\_EDGES)\), with int dtype, represents the source node index of COO edge matrix.
dst_idx (Union[Tensor, numpy.ndarray]) – tensor with shape \((N\_EDGES)\), with int dtype, represents the destination node index of COO edge matrix.
n_nodes (int) – integer, represent the nodes count of the graph.
n_edges (int) – integer, represent the edges count of the graph.
node_feat (Union[Tensor, numpy.ndarray, optional]) – node feature. Default:
None
.node_label (Union[Tensor, numpy.ndarray, optional]) – node labels. Default:
None
.train_mask (Union[Tensor, numpy.ndarray, optional]) – mask of train index. Default:
None
.val_mask (Union[Tensor, numpy.ndarray, optional]) – msk of train index. Default:
None
.test_mask (Union[Tensor, numpy.ndarray, optional]) – mask of train index. Default:
None
.rerank (bool, optional) – whether to reorder node features, node labels, and masks. Default:
False
.
- Returns
- csr_g (tuple) - info of csr graph, it contains indices of csr graph, indptr of csr graph,
node numbers of csr graph, edges numbers of csr graph, pre-stored backward indices of csr graph, pre-stored backward indptr of csr graph.
in_deg - in degree of each node.
out_deg - out degree of each node.
node_feat (Union[Tensor, numpy.ndarray, optional]) - reorder node features.
node_label (Union[Tensor, numpy.ndarray, optional]) - reorder node labels.
train_mask (Union[Tensor, numpy.ndarray, optional]) - reorder train index mask.
val_mask (Union[Tensor, numpy.ndarray, optional]) - reorder val index mask.
test_mask (Union[Tensor, numpy.ndarray, optional]) - reorder test index mask.
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> from mindspore_gl.graph import graph_csr_data >>> node_feat = np.array([[1, 2, 3, 4], [2, 4, 1, 3], [1, 3, 2, 4], ... [9, 7, 5, 8], [8, 7, 6, 5], [8, 6, 4, 6], [1, 2, 1, 1]], np.float32) >>> n_nodes = 7 >>> n_edges = 8 >>> edge_feat_size = 7 >>> src_idx = np.array([0, 2, 2, 3, 4, 5, 5, 6], np.int32) >>> dst_idx = np.array([1, 0, 1, 5, 3, 4, 6, 4], np.int32) >>> node_label = np.array([0, 1, 0, 1, 0, 1, 0]) >>> train_mask = np.array([True, True, True, True, False, False, False]) >>> val_mask = np.array([False, False, False, False, True, True, True]) >>> g, in_deg, out_deg, node_feat, node_label, train_mask, val_mask,\ >>> test_mask = graph_csr_data(src_idx,dst_idx, n_nodes, n_edges, node_feat, node_label, ... train_mask, val_mask, test_mask=None, rerank=True) >>> print(g[0], g[1]) [2 3 5 6 3 4 0 6] [0 2 4 5 6 7 8 8] >>> print(node_feat, node_label) [[8. 7. 6. 5.] [2. 4. 1. 3.] [1. 2. 1. 1.] [8. 6. 4. 6.] [9. 7. 5. 8.] [1. 2. 3. 4.] [1. 3. 2. 4.]] [0 1 0 1 1 0 0] >>> print(train_mask, val_mask) [False True False False True True True] [ True False True True False False False]