mindspore_gl.graph.PadArray2d
- class mindspore_gl.graph.PadArray2d(dtype, direction, fill_value=None, reset_with_fill_value=True, mode=PadMode.AUTO, size=None, use_shared_numpy=False)[source]
PadArray2d, specific pad operator for 2D array.
Warning
PadArray2d will reuse memory buffer to speedup pad operation.
- Parameters
dtype (numpy.dtype) – To determine result’s data type.
direction (PadDirection) – Pad direction for array, PadDirection. ROW means we will pad along axis=1, PadDirection.COl means we will pad along axis=0.
fill_value (Union[float, int, optional]) – Fill value for padded region. Default:
None
.reset_with_fill_value (bool, optional) – PadArray2d will reuse memory buffer, you can set this value to
False
if you dont care about the padded value. Default:True
.mode (PadMode, optional) – Pad mode for array, if
PadMode.CONST
, this op will pad array to user-specific size. IfPadMode.AUTO
, this will choose padded result length according to input’s length. The expected length can be calculated as \(length=2^{\text{ceil}\left ( \log_{2}{input\_length} \right ) }\) Default:mindspore_gl.graph.PadMode.AUTO
.size (Union[List, Tuple, optional]) – User specific size for padding result. Default:
None
.use_shared_numpy (bool, optional) – If we use SharedNDArray for speeding up inter process communication. This is recommended if you do feature collection and feature padding in child process and need inter process communication for graph feature. Default:
False
.
- Inputs:
input_array (numpy.array) - input numpy array for pad.
- Raises
ValueError – pad size should be provided when padding mode is
PadMode.CONST
.
- Supported Platforms:
Ascend
GPU
Examples
>>> from mindspore_gl.graph.ops import PadArray2d, PadMode, PadDirection >>> pad_op = PadArray2d(dtype=np.float32, mode=PadMode.CONST, direction=PadDirection.COL, ... size=(3, 1), fill_value=0) >>> node_list = np.array([[1]]) >>> res = pad_op(node_list) >>> print(res) [[1.] [0.] [0.]]
- lazy(shape: Union[List, Tuple], **kwargs)[source]
Lazy Array Pad, this will just determine padded result shape and return an empty array with target shape.
- Parameters
shape (Union[List, Tuple]) – input array’s shape for pad.
kwargs (dict) –
config dict
fill_value (Union[int, float]): fill the padding array with value.
- Returns
memory_buffer(numpy.ndarray), an empty numpy array with target padded shape.