文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.tensor_scatter_sub

mindspore.ops.tensor_scatter_sub(input_x, indices, updates)[源代码]

根据指定的更新值和输入索引,通过减法进行运算,将结果赋值到输出Tensor中。当同一索引有不同值时,更新的结果将是所有值的总和。此操作几乎等同于使用 mindspore.ops.ScatterNdSub ,只是更新后的结果是通过算子output返回,而不是直接原地更新input。

indices 的最后一个轴是每个索引向量的深度。对于每个索引向量, updates 中必须有相应的值。 updates 的shape应该等于 input_x[indices] 的shape。有关更多详细信息,请参见样例。

说明

如果 indices 中的值超出输入 input_x 索引范围:GPU平台上相应的 updates 不会更新到 input_x 且不会抛出索引错误;CPU平台上直接抛出索引错误;Ascend平台不支持越界检查,若越界可能会造成未知错误。

output[indices]=input_xupdate
参数:
  • input_x (Tensor) - 输入Tensor。 input_x 的维度必须不小于 indices.shape[-1]

  • indices (Tensor) - input_x 执行scatter操作的目标索引,数据类型为int32或int64,rank必须大于等于2。

  • updates (Tensor) - 指定与 input_x 相减操作的Tensor,其数据类型与 input_x 相同。并且shape应等于 indices.shape[:1]+input_x.shape[indices.shape[1]:]

返回:

Tensor,shape和数据类型与输入 input_x 相同。

异常:
  • TypeError - indices 的数据类型不满足int32或int64。

  • ValueError - input_x 的rank小于 indices.shape的最后一维。

  • RuntimeError - indices 中的值超出了 input_x 的索引范围。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore import ops
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32)
>>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32)
>>> output = ops.tensor_scatter_sub(input_x, indices, updates)
>>> print(output)
[[-3.3000002  0.3        3.6      ]
 [ 0.4        0.5       -3.2      ]]