文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.sparse_segment_mean

mindspore.ops.sparse_segment_mean(x, indices, segment_ids)[源代码]

计算输出Tensor outputi=jxindices[j]N ,其中平均是对所有 j 满足 segment_ids[j]==i 的元素, N 表示相加的元素个数。如果给定的分段ID i 不存在,则有 output[i]=0

说明

  • 在CPU平台, segment_ids 中的值会被校验是否排序,若索引值不是升序的,则抛出错误。另外, indices 中的值也会被校验是否在界限内,若索引值超出范围[0, x.shape[0]),则抛出错误。

  • 在GPU平台,对于 segment_ids 未排序和 indices 越界则不抛出错误。如果,无序的 segment_ids 会导致安全但未指定的行为,而超出范围的 indices 将被忽略。

参数:
  • x (Tensor) - Tensor,其维度必须大于或等于1。

  • indices (Tensor) - 一维Tensor,数据类型为int32或int64。

  • segment_ids (Tensor) - 一维Tensor,与 indices 有同样的数据类型。索引值应当是已排序的,并且可以重复。

返回:

Tensor,其数据类型和维数与 x 相同。第一维度等于 segment_ids 的最后一个元素的值加一,其他维度与 x 的对应维度相同。

异常:
  • TypeError - xindicessegment_ids 不是Tensor类型。

  • TypeError - x 的数据类型不是float16、float32、float64的任一类型。

  • TypeError - indicessegment_ids 的数据类型不是int32、int64的任一类型。

  • TypeError - indicessegment_ids 的数据类型不相同。

  • ValueError - xindicessegment_ids 的维度不满足上述要求。

  • ValueError - indicessegment_ids 的shape不相同。

支持平台:

GPU CPU

样例:

>>> import mindspore
>>> from mindspore import Tensor, ops
>>> x = Tensor([[0, 1, 2], [1, 2, 3], [3, 6, 7]], dtype=mindspore.float32)
>>> indices = Tensor([0, 1, 2], dtype=mindspore.int32)
>>> segment_ids = Tensor([1,2,2], dtype=mindspore.int32)
>>> out = ops.sparse_segment_mean(x, indices, segment_ids)
>>> print(out)
[[0. 0. 0.]
 [0. 1. 2.]
 [2. 4. 5.]]