文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.MirrorPad

class mindspore.ops.MirrorPad(mode='REFLECT')[源代码]

通过指定的填充模式和大小对输入Tensor进行填充。

参数:
  • mode (str,可选) - 指定填充模式的可选字符串。可选值为: 'REFLECT''SYMMETRIC' 。默认值: 'REFLECT' 。 当采样grid超出输入Tensor的边界时,各种填充模式效果如下:

    • 'REFLECT' :使用零填充输入Tensor。例如,向 [1, 2, 3, 4] 的两边分别填充2个元素,结果为 [3, 2, 1, 2, 3, 4, 3, 2]。

    • 'SYMMETRIC' :使用Tensor边缘上像素的值填充输入Tensor。例如,向 [1, 2, 3, 4] 的两边分别填充2个元素,结果为 [2, 1, 1, 2, 3, 4, 4, 3]。

输入:
  • input_x (Tensor) - shape: (N,) ,其中 表示任何数量的附加维度。

  • paddings (Tensor) - shape为 (N,2) 的矩阵。N为输入Tensor的秩。int类型。 对于输入的第 D 个维度, paddings[D, 0] 表示需在输入第 D 维头部填充的数量, paddings[D, 1] 表示需在输入第 D 维尾部填充的数量。

输出:

填充后的Tensor。

  • 如果设置 mode'REFLECT' ,将使用对称轴对称复制的方式来进行填充。 如果 input_x 为[[1,2,3],[4,5,6],[7,8,9]], paddings 为[[1,1], [2,2]],则输出为[[6,5,4,5,6,5,4],[3,2,1,2,3,2,1],[6,5,4,5,6,5,4],[9,8,7,8,9,8,7],[6,5,4,5,6,5,4]]。 更直观的理解请参见下面的样例。

  • 如果 mode'SYMMETRIC' ,则填充方法类似于 'REFLECT' 。它也会根据对称轴复制,但是也包括对称轴。如果 input_x 为[[1,2,3],[4,5,6],[7,8,9]], paddings 为[[1,1], [2,2]],则输出为[[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]]。 更直观的理解请参见下面的样例。

异常:
  • TypeError - input_xpadings 不是Tensor。

  • TypeError - mode 不是str。

  • ValueError - paddings.size 不等于2 * len(input_x)。

支持平台:

Ascend GPU CPU

样例:

>>> from mindspore import Tensor, nn, ops
>>> # case1: mode="REFLECT"
>>> class Net(nn.Cell):
...    def __init__(self, mode):
...        super(Net, self).__init__()
...        self.pad = ops.MirrorPad(mode=mode)
...        self.paddings = Tensor([[1, 1], [2, 2]])
...    def construct(self, input_x):
...        return self.pad(input_x, self.paddings)
...
>>> input_x = Tensor([[1,2,3], [4,5,6], [7,8,9]])
>>> pad = Net("REFLECT")
>>> output = pad(input_x)
>>> print(output)
[[6 5 4 5 6 5 4]
 [3 2 1 2 3 2 1]
 [6 5 4 5 6 5 4]
 [9 8 7 8 9 8 7]
 [6 5 4 5 6 5 4]]
>>> # case2: mode="SYMMETRIC"
>>> pad = Net("SYMMETRIC")
>>> output = pad(input_x)
>>> print(output)
[[2 1 1 2 3 3 2]
 [2 1 1 2 3 3 2]
 [5 4 4 5 6 6 5]
 [8 7 7 8 9 9 8]
 [8 7 7 8 9 9 8]]