文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.ApplyAdagradV2

class mindspore.ops.ApplyAdagradV2(epsilon, update_slots=True)[源代码]

根据Adagrad算法更新相关参数或者Tensor。

Adagrad算法在论文 Adaptive Subgradient Methods for Online Learning and Stochastic Optimization 中提出。

accum+=gradgradvar=lrgrad1accum+ϵ

其中 ϵ 表示 epsilon

varaccumgrad 的输入遵循隐式类型转换规则,使数据类型一致。如果它们具有不同的数据类型,则低精度数据类型将转换为相对最高精度的数据类型。

说明

ApplyAdagradV2ApplyAdagrad 不同点在于 ApplyAdagradV2 多一个较小的常量值 ϵ

参数:
  • epsilon (float) - 添加到分母上的较小值,以确保数值的稳定性。

  • update_slots (bool) - 如果为 True ,则将更新 accum 。默认值: True

输入:
  • var (Union[Parameter, Tensor]) - 要更新的变量。为任意维度,其数据类型为float16或float32。其shape为 (N,) ,其中 为任意数量的额外维度。

  • accum (Union[Parameter, Tensor]) - 要更新的累积。shape必须与 var 相同。

  • lr (Union[Number, Tensor]) - 学习率,必须是float或具有float16或float32数据类型的Scalar的Tensor。

  • grad (Tensor) - 梯度,为一个Tensor。shape必须与 var 相同。

输出:

2个Tensor组成的tuple,更新后的参数或者Tensor。

  • var (Tensor) - shape和数据类型与 var 相同。

  • accum (Tensor) - shape和数据类型与 accum 相同。

异常:
  • TypeError - 如果 varaccumlrgrad 的数据类型既不是float16也不是float32。

  • TypeError - 如果 lr 既不是数值型也不是Tensor。

  • TypeError - 如果 varaccumgrad 不支持数据类型转换。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, nn, ops, Parameter
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.apply_adagrad_v2 = ops.ApplyAdagradV2(epsilon=1e-6)
...         self.var = Parameter(Tensor(np.array([[0.6, 0.4],
...                                               [0.1, 0.5]]).astype(np.float32)), name="var")
...         self.accum = Parameter(Tensor(np.array([[0.6, 0.5],
...                                                 [0.2, 0.6]]).astype(np.float32)), name="accum")
...     def construct(self, lr, grad):
...         out = self.apply_adagrad_v2(self.var, self.accum, lr, grad)
...         return out
...
>>> net = Net()
>>> lr = Tensor(0.001, mindspore.float32)
>>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32))
>>> output = net(lr, grad)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
[[ 5.99638879e-01,  3.99296492e-01],
 [ 9.97817814e-02,  4.99281585e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 6.90000057e-01,  9.90000010e-01],
 [ 2.10000008e-01,  1.24000001e+00]]))