文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.mint.minimum

mindspore.mint.minimum(input, other)[源代码]

逐元素计算两个输入Tensor中的最小值。

outputi=min(inputi,otheri)

说明

  • 输入 inputother 遵循隐式类型转换规则,使数据类型保持一致。

  • 当输入是两个Tensor时,它们的数据类型不能同时是bool。

  • 当输入是一个Tensor和一个Scalar时,Scalar只能是一个常数。

  • 支持广播。

  • 如果一个元素和NaN比较,则返回NaN。

参数:
  • input (Union[Tensor, Number, bool]) - 第一个输入可以是Number或bool,也可以是数据类型为Number或bool的Tensor。

  • other (Union[Tensor, Number, bool]) - 第二个输入可以是Number或bool,也可以是数据类型为Number或bool的Tensor。

返回:

一个Tensor,其shape与广播后的shape相同,其数据类型为两个输入中精度较高的类型。

异常:
  • TypeError - inputother 不是以下之一:Tensor、Number、bool。

  • ValueError - inputother 的广播后的shape不相同。

支持平台:

Ascend

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, mint
>>> # case 1 : same data type
>>> input = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
>>> other = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
>>> output = mint.minimum(input, other)
>>> print(output)
[1. 2. 3.]
>>> # case 2 : different data type
>>> input = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.int32)
>>> other = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
>>> output = mint.minimum(input, other)
>>> print(output.dtype)
Float32