文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

比较与torch.nn.GELU的差异

查看源文件

torch.nn.GELU

class torch.nn.GELU()(input) -> Tensor

更多内容详见torch.nn.GELU

mindspore.nn.GELU

class mindspore.nn.GELU(approximate=True)(x) -> Tensor

更多内容详见mindspore.nn.GELU

差异对比

PyTorch:该函数表示高斯误差线性单位函数GELU(X)=X×Φ(x),其中Φ(x)是高斯分布的积累分布函数。输入x表示任意数量的维度。

MindSpore:MindSpore此API实现功能与PyTorch基本一致。

分类

子类

PyTorch

MindSpore

差异

参数

参数1

-

approximate

决定是否启用approximation,默认值为True。经测试,approximate为False后,输出结果与Pytorch更加相似。

输入

单输入

input

x

功能一致,参数名不同

代码示例1

两API实现功能一致,用法相同。

# PyTorch
import torch
input_x = torch.Tensor([[2, 4], [1, 2]])
output = torch.nn.GELU()(input_x)
print(output.detach().numpy())
# [[1.9544997 3.9998734]
#  [0.8413447 1.9544997]]

# MindSpore
import mindspore
import numpy as np
x = mindspore.Tensor(np.array([[2, 4], [1, 2]]), mindspore.float32)
output = mindspore.nn.GELU(approximate=False)(x)
print(output)
# [[1.9544997 3.9998732]
#  [0.8413447 1.9544997]]