文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.Reduce

class mindspore.ops.Reduce(dest_rank, op=ReduceOp.SUM, group=GlobalComm.WORLD_COMM_GROUP)[源代码]

规约指定通信组中的张量,并将规约结果发送到目标为dest_rank的进程中,返回发送到目标进程的张量。

说明

只有目标为dest_rank的进程(通信组的本地进程编号)才会收到规约操作后的输出。 当前支持Pynative和Graph模式。但Graph模式只支持图编译等级为O0的场景。 其他进程只得到一个形状为[1]的张量,且该张量没有数学意义。

参数:
  • dest_rank (int) - 指定接收输出的目标进程编号(通信组的本地进程编号),只有该进程会接收规约操作后的输出结果。

  • op (str,可选) - 规约的具体操作。如 "sum""prod""max" 、和 "min" 。默认值: ReduceOp.SUM

  • group (str,可选) - 工作的通信组。默认值:GlobalComm.WORLD_COMM_GROUP (即Ascend平台为 "hccl_world_group" ,GPU平台为 "nccl_world_group" )。

输入:
  • input_x (Tensor) - Tensor的shape为 (x1,x2,...,xR)

输出:

Tensor,返回规约操作后,目标进程的tensor。数据类型与输入的 tensor 一致,shape为 (x1,x2,...,xR)

异常:
  • TypeError - 首个输入的数据类型不为Tensor,opgroup 不是字符串。

  • RuntimeError - 如果目标设备无效,或者后端无效,或者分布式初始化失败。

支持平台:

Ascend

样例:

说明

运行以下样例之前,需要配置好通信环境变量。

针对Ascend/GPU/CPU设备,推荐使用msrun启动方式,无第三方以及配置文件依赖。详见 msrun启动

该样例需要在4卡环境下运行。

>>> from mindspore import ops
>>> import mindspore.nn as nn
>>> from mindspore.communication import init
>>> from mindspore import Tensor
>>> import numpy as np
>>> # Launch 4 processes.
>>> init()
>>> class ReduceNet(nn.Cell):
>>>     def __init__(self):
>>>         super(Net, self).__init__()
>>>         self.reduce = ops.Reduce(dest_rank=1)
>>>
>>>     def construct(self, x):
>>>         out = self.reduce(x)
>>>         return out
>>> input = Tensor(np.ones([2, 8]).astype(np.float32))
>>> net = ReduceNet()
>>> output = net(input)
>>> print(output)
Process with rank 1: [[4. 4. 4. 4. 4. 4. 4. 4.]
[4. 4. 4. 4. 4. 4. 4. 4.]],
Other proesses: [0.].
教程样例: