文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.mint.all

mindspore.mint.all(input, dim=None, keepdim=False)[源代码]

默认情况下,通过对维度中所有元素进行“逻辑与”来减少 input 的维度。也可以沿 dim 减少 input 的维度。通过控制 keepdim 来确定输出和输入的维度是否相同。

说明

Tensor类型的 dim 仅用作兼容旧版本,不推荐使用。

参数:
  • input (Tensor) - 输入Tensor,shape是 (N,) ,其中 表示任意数量的附加维度。

  • dim (Union[int, tuple(int), list(int), Tensor], 可选) - 要减少的维度。假设 input 的秩为r,取值范围[-r,r)。默认值: None ,缩小所有维度。

  • keepdim (bool, 可选) - 如果为 True ,则保留缩小的维度,大小为1。否则移除维度。默认值: False

返回:

Tensor,数据类型是bool。

  • 如果 dimNone ,且 keepdimFalse ,则输出一个零维Tensor,表示输入Tensor中所有元素进行“逻辑与”。

  • 如果 dim 为int,例如取值为2,并且 keepdimFalse ,则输出的shape为 (input1,input3,...,inputR)

  • 如果 dim 为tuple(int)或list(int),例如取值为(2, 3),并且 keepdimFalse ,则输出Tensor的shape为 (input1,input4,...,inputR)

  • 如果 dim 为一维Tensor,例如取值为[2, 3],并且 keepdimFalse ,则输出Tensor的shape为 (input1,input4,...,inputR)

异常:
  • TypeError - keepdim 不是bool类型。

  • TypeError - input 不是Tensor。

  • TypeError - dim 不是以下数据类型之一:int、tuple、list或Tensor。

支持平台:

Ascend

样例:

>>> import numpy as np
>>> from mindspore import Tensor, mint
>>> x = Tensor(np.array([[True, False], [True, True]]))
>>> # case 1: Reduces a dimension by the "logicalAND" of all elements in the dimension.
>>> output = mint.all(x, keepdim=True)
>>> print(output)
[[False]]
>>> print(output.shape)
(1, 1)
>>> # case 2: Reduces a dimension along axis 0.
>>> output = mint.all(x, dim=0)
>>> print(output)
[ True False]
>>> # case 3: Reduces a dimension along axis 1.
>>> output = mint.all(x, dim=1)
>>> print(output)
[False True]