比较与tf.keras.optimizers.Ftrl的功能差异
tf.keras.optimizers.Ftrl
tf.keras.optimizers.Ftrl(
learning_rate=0.001,
learning_rate_power=-0.5,
initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
name='Ftrl',
l2_shrinkage_regularization_strength=0.0,
beta=0.0,
**kwargs) -> Tensor
更多内容详见tf.keras.optimizers.Ftrl。
mindspore.nn.FTRL
class mindspore.nn.FTRL(
params,
initial_accum=0.1,
learning_rate=0.001,
lr_power=-0.5,
l1=0.0,
l2=0.0,
use_locking=False,
loss_scale=1.0,
weight_decay=0.0)(grads) -> Tensor
更多内容详见mindspore.nn.FTRL。
差异对比
TensorFlow:一种在线凸优化算法,适合具有大而稀疏特征特征空间的浅层模型。
MindSpore:MindSpore此API实现功能与TensorFlow基本一致。
分类 |
子类 |
TensorFlow |
MindSpore |
差异 |
---|---|---|---|---|
参数 |
参数1 |
learning_rate |
learning_rate |
- |
参数2 |
learning_rate_power |
lr_power |
功能一致,参数名不同 |
|
参数3 |
initial_accumulator_value |
initial_accum |
功能一致,参数名不同 |
|
参数4 |
l1_regularization_strength |
l1 |
功能一致,参数名不同 |
|
参数5 |
l2_regularization_strength |
l2 |
功能一致,参数名不同 |
|
参数6 |
name |
- |
不涉及 |
|
参数7 |
l2_shrinkage_regularization_strength |
weight_decay |
功能一致,参数名不同 |
|
参数8 |
beta |
- |
一个浮点值,默认值为0.0。MindSpore无此参数 |
|
参数9 |
**kwargs |
- |
不涉及 |
|
参数10 |
- |
params |
由Parameter类组成的列表或由字典组成的列表,TensorFlow中无此参数 |
|
参数11 |
- |
use_locking |
如果为True,则更新操作使用锁保护,默认值为False。TensorFlow中无此参数 |
|
参数12 |
- |
loss_scale |
梯度缩放系数,默认值:1.0,TensorFlow中无此参数 |
|
参数13 |
- |
grads |
优化器中 |
代码示例1
learning_rate均设置为0.1,两API功能一致,用法相同。
# TensorFlow
import tensorflow as tf
opt = tf.keras.optimizers.Ftrl(learning_rate=0.1)
var = tf.Variable(1.0)
val0 = var.value()
loss = lambda: (var ** 2) / 2.0
step_count = opt.minimize(loss, [var]).numpy()
val1 = var.value()
print([val1.numpy()])
# [0.6031424]
step_count = opt.minimize(loss, [var]).numpy()
val2 = var.value()
print([val2.numpy()])
# [0.5532904]
# MindSpore
import numpy as np
import mindspore.nn as nn
import mindspore as ms
from mindspore.dataset import NumpySlicesDataset
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.w = ms.Parameter(ms.Tensor(np.array([1.0], np.float32)), name='w')
def construct(self, x):
f = self.w * x
return f
class MyLoss(nn.LossBase):
def __init__(self, reduction='none'):
super(MyLoss, self).__init__()
def construct(self, y, y_pred):
return (y - y_pred) ** 2 / 2.0
net = Net()
loss = MyLoss()
optim = nn.FTRL(params=net.trainable_params(), learning_rate=0.1)
model = ms.Model(net, loss_fn=loss, optimizer=optim)
data_x = np.array([1.0], dtype=np.float32)
data_y = np.array([0.0], dtype=np.float32)
data = NumpySlicesDataset((data_x, data_y), ["x", "y"])
input_x = ms.Tensor(np.array([1.0], np.float32))
y0 = net(input_x)
model.train(1, data)
y1 = net(input_x)
print(y1)
# [0.6031424]
model.train(1, data)
y2 = net(input_x)
print(y2)
# [0.5532904]
代码示例2
learning_rate均设置为0.01,两API功能一致,用法相同。
# TensorFlow
import tensorflow as tf
opt = tf.keras.optimizers.Ftrl(learning_rate=0.01)
var = tf.Variable(1.0)
val0 = var.value()
loss = lambda: (var ** 2) / 2.0
step_count = opt.minimize(loss, [var]).numpy()
val1 = var.value()
print([val1.numpy()])
# [0.688954]
step_count = opt.minimize(loss, [var]).numpy()
val2 = var.value()
print([val2.numpy()])
# [0.6834637]
# MindSpore
import numpy as np
import mindspore.nn as nn
import mindspore as ms
from mindspore.dataset import NumpySlicesDataset
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.w = ms.Parameter(ms.Tensor(np.array([1.0], np.float32)), name='w')
def construct(self, x):
f = self.w * x
return f
class MyLoss(nn.LossBase):
def __init__(self, reduction='none'):
super(MyLoss, self).__init__()
def construct(self, y, y_pred):
return (y - y_pred) ** 2 / 2.0
net = Net()
loss = MyLoss()
optim = nn.FTRL(params=net.trainable_params(), learning_rate=0.01)
model = ms.Model(net, loss_fn=loss, optimizer=optim)
data_x = np.array([1.0], dtype=np.float32)
data_y = np.array([0.0], dtype=np.float32)
data = NumpySlicesDataset((data_x, data_y), ["x", "y"])
input_x = ms.Tensor(np.array([1.0], np.float32))
y0 = net(input_x)
model.train(1, data)
y1 = net(input_x)
print(y1)
# [0.688954]
model.train(1, data)
y2 = net(input_x)
print(y2)
# [0.6834637]