比较与torch.dot的功能差异

torch.dot

torch.dot(
    input,
    tensor
)

更多内容详见torch.dot

mindspore.ops.tensor_dot

mindspore.ops.tensor_dot(
    x1,
    x2,
    axes
)

更多内容详见mindspore.ops.tensor_dot

使用方式

PyTorch:计算两个相同shape的tensor的点乘(内积),仅支持1D。

MindSpore:计算两个tensor在任意轴上的点乘,支持任意维度的tensor,但指定的轴对应的形状要相等。当输入为1D,轴设定为1时和PyTorch的功能一致。

代码示例

import mindspore as ms
import mindspore.ops as ops
import torch
import numpy as np

# In MindSpore, tensor of any dimension will be supported.
# And parameters will be set to specify how to compute among dimensions.
input_x1 = ms.Tensor(np.array([2, 3, 4]), ms.float32)
input_x2 = ms.Tensor(np.array([2, 1, 3]), ms.float32)
output = ops.tensor_dot(input_x1, input_x2, 1)
print(output)
# Out:
# 19.0

# In torch, only 1D tensor's computation will be supported.
input_x1 = torch.tensor([2, 3, 4])
input_x2 = torch.tensor([2, 1, 3])
output = torch.dot(input_x1, input_x2)
print(output)
# Out:
# tensor(19)