比较与torch.optim.Optimizer的入参设置的差异
torch.optim.Optimizer
class torch.optim.Optimizer(
params,
defaults
)
更多内容详见torch.optim.Optimizer。
mindspore.nn.Optimizer
class mindspore.nn.Optimizer(
learning_rate,
parameters,
weight_decay=0.0,
loss_scale=1.0
)
更多内容详见mindspore.nn.Optimizer。
使用方式
parameters设置
使用默认接口
MindSpore:optimizer的入参params
直接使用trainable_params
方法配置。
from mindspore import nn
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(3, 64, 3)
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
def construct(self, x):
x = self.conv(x)
x = self.bn(x)
out = self.relu(x)
return out
net = Net()
optim_sgd = nn.SGD(params=net.trainable_params())
PyTorch:optimizer的入参params
直接使用parameters
方法配置。
from torch import optim
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(3, 64, 3)
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
net = Net()
optim_sgd = optim.SGD(params=net.parameters(), lr=0.01)
用户自定义配置传入的参数
MindSpore:首先使用get_parameters
方法获取网络中所有的参数,再根据需要,例如参数名称等,进行筛选,并传入优化器中。
from mindspore import nn
net = Net()
all_params = net.get_parameters()
no_conv_params = list(filter(lambda x: "conv" not in x.name, all_params))
optim_sgd = nn.SGD(no_conv_params)
PyTorch:首先使用named_parameters
方法获取网络中所有的参数,再根据需要,例如参数名称等,进行筛选,并传入优化器中。
from torch import optim
net = Net()
all_params = net.named_parameters()
no_conv_params = []
for pname, p in all_params:
if "conv" not in pname:
no_conv_params.append(p)
optim_sgd = optim.SGD(no_conv_params, lr=0.01)
learning_rate设置
固定学习率:用法相同
动态学习率
mindspore:
from mindspore import nn
import mindspore as ms
# dynamic_lr
milestone = [2, 5, 10]
learning_rates = [0.1, 0.05, 0.01]
lr_dynamic = nn.dynamic_lr.piecewise_constant_lr(milestone, learning_rates)
print(lr_dynamic)
# learning_rate_schedule
lr_schedule = nn.learning_rate_schedule.PolynomialDecayLR(learning_rate=0.1,
end_learning_rate=0.01,
decay_steps=4,
power=0.5 )
global_step = ms.Tensor(2, ms.int32)
result = lr_schedule(global_step)
print(result)
# 用作优化器入参
optimizer1 = nn.Momentum(net.trainable_params(), learning_rate=lr_dynamic, momentum=0.9, weight_decay=0.9)
optimizer2 = nn.Momentum(net.trainable_params(), learning_rate=lr_schedule, momentum=0.9, weight_decay=0.9)
[0.1, 0.1, 0.05, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01]
0.0736396
pytorch:
from torch import optim
import numpy as np
optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9)
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
loss_fn = torch.nn.MSELoss()
dataset = [(torch.tensor(np.random.rand(1, 3, 64, 32).astype(np.float32)),
torch.tensor(np.random.rand(1, 64, 62, 30).astype(np.float32)))]
for epoch in range(5):
for input, target in dataset:
optimizer.zero_grad()
output = net(input)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
scheduler.step()
print(scheduler.get_last_lr())
[0.09000000000000001]
[0.08100000000000002]
[0.07290000000000002]
[0.06561000000000002]
[0.05904900000000002]
weight_decay设置
用法一致。
loss_scale设置
mindspore:作为优化器的入参,配合FixedLossScaleManager使用。
pytorch:不单独为优化器设置混合精度。
参数分组
PyTorch和MindSpore都支持对分组的参数设置不同的值,基本用法相似。但mindspore只支持’params’,’weight_decay’,’lr’,’grad_centralizaiton’分组;pytorch支持优化器的所有参数分组。
当前MindSpore和pytorch都存在个别优化器不支持参数分组,详情参考各优化器的说明。
MindSpore:
from mindspore import nn
net = Net()
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
no_conv_params = list(filter(lambda x: "conv" not in x.name, net.trainable_params()))
fix_lr = 0.01
polynomial_decay_lr = nn.learning_rate_schedule.PolynomialDecayLR(learning_rate=0.1,
end_learning_rate=0.01,
decay_steps=4,
power=0.5 )
group_params = [{'params': conv_params, 'weight_decay': 0.01, 'lr': fix_lr},
{'params': no_conv_params, 'lr': polynomial_decay_lr},
{'order_params': net.trainable_params()}]
optim_sgd = nn.SGD(group_params, learning_rate=0.1)
PyTorch:
from torch import optim
net = Net()
all_params = net.parameters()
conv_params = []
no_conv_params = []
for pname, p in net.named_parameters():
if 'conv' in pname:
conv_params += [p]
else:
no_conv_params += [p]
group_params = [{'params': conv_params, 'weight_decay': 0.01, 'lr': 0.01},
{'params': no_conv_params, 'nesterov': True}]
optim_sgd = optim.SGD(group_params, lr=0.01)