比较与torch.nn.MaxPool3d的功能差异

torch.nn.MaxPool3d

torch.nn.MaxPool3d(
    kernel_size=1,
    stride=None,
    padding=0,
    dilation=1,
    return_indices=False,
    ceil_mode=False
)

更多内容详见torch.nn.MaxPool3d

mindspore.ops.MaxPool3D

class mindspore.ops.MaxPool3D(
    kernel_size=1,
    strides=1,
    pad_mode='valid',
    pad_list=0,
    ceil_mode=None,
    data_format='NCDHW'
)(input)

更多内容详见mindspore.ops.MaxPool3D

使用方式

PyTorch:同时支持五维数据 (N, C, Din, Hin, Win) 和四维数据(C, Din, Hin, Win)。

MindSpore:仅支持五维数据(N, C, Din, Hin, Win)。

迁移建议:如需要MindSpore MaxPool3D处理四维输入,可以用ExpandDims算子将原始输入维度扩张为(1, C, Din, Hin, Win),传入MaxPool3D后再将输出用Squeeze算子将维度由(1, C, Dout, Hout, Wout)转为(C, Dout, Hout, Wout)。

代码示例

import mindspore as ms
import mindspore.ops as ops
import torch
import numpy as np

# In MindSpore
net = ops.MaxPool3D((3, 2, 2), strides=2)
x = ms.Tensor(np.ones([20, 16, 50, 44, 31]), ms.float32)
output = net(x).shape
print(output)
# Out:
# (20, 16, 24, 22, 15)

# In PyTorch
m = torch.nn.MaxPool3d((3, 2, 2), stride=2)
input = torch.rand(20, 16, 50, 44, 31)
output = m(input).shape
print(output)
# Out:
# torch.Size([20, 16, 24, 22, 15])