比较与torch.nn.functional.mse_loss的功能差异

torch.nn.functional.mse_loss

torch.nn.functional.mse_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor

更多内容详见torch.nn.functional.mse_loss

mindspore.nn.MSELoss

class mindspore.nn.MSELoss(reduction='mean')(logits, labels) -> Tensor

更多内容详见mindspore.nn.MSELoss

差异对比

PyTorch:用于计算输入x和y每一个元素的均方误差,reduction参数指定应用于loss的规约类型。

MindSpore:实现与PyTorch一致的功能。

分类

子类

PyTorch

MindSpore

差异

参数

参数1

input

logits

功能一致,参数名不同

参数2

target

labels

功能一致,参数名不同

参数3

size_average

-

被reduction替代

参数4

reduce

-

被reduction替代

参数5

reduction

reduction

-

代码示例1

计算input和target的均方误差。

# PyTorch
import torch
from torch.nn.functional import mse_loss
from torch import tensor
import numpy as np

# 默认情况,reduction='mean'
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
input = tensor(input_, dtype=torch.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = tensor(target_, dtype=torch.float32)
output = mse_loss(input, target)
print(output.numpy())
# 0.5

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

loss = nn.MSELoss()
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
input = Tensor(input_, dtype=mindspore.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = Tensor(target_, dtype=mindspore.float32)
output = loss(input, target)
print(output)
# 0.5

代码示例2

计算inputtarget的均方误差,以求和方式规约。

# PyTorch
import torch
from torch.nn.functional import mse_loss
from torch import tensor
import numpy as np

# redcution='sum'
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
input = tensor(input_, dtype=torch.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = tensor(target_, dtype=torch.float32)
print(target)
output = mse_loss(input, target, reduction='sum')
print(output.numpy())
# 2.0


# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

loss = nn.MSELoss(reduction='sum')
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
input = Tensor(input_, dtype=mindspore.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = Tensor(target_, dtype=mindspore.float32)
output = loss(input, target)
print(output)
# 2.0