比较与torch.nn.Conv1d的功能差异

torch.nn.Conv1d

class torch.nn.Conv1d(
    in_channels,
    out_channels,
    kernel_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    bias=True,
    padding_mode='zeros'
)(input) -> Tensor

更多内容详见torch.nn.Conv1d

mindspore.nn.Conv1d

class mindspore.nn.Conv1d(
    in_channels,
    out_channels,
    kernel_size,
    stride=1,
    pad_mode='same',
    padding=0,
    dilation=1,
    group=1,
    has_bias=False,
    weight_init='normal',
    bias_init='zeros'
)(x) -> Tensor

更多内容详见mindspore.nn.Conv1d

差异对比

PyTorch:对输入Tensor计算一维卷积,通常情况下,输入大小为 \(\left(N, C_{\text {in }}, L\right)\) 、输出大小为 \(\left(N, C_{\text {out }}, L_{\text {out }}\right)\) 的输出值可以描述为: \(\operatorname{out}\left(N_{i}, C_{\text {out }_{j}}\right)=\operatorname{bias}\left(C_{\text {out }_{j}}\right)+\sum_{k=0}^{C_{i n}-1} \text { weight }\left(C_{\text {out }_{j}}, k\right) \star \operatorname{input}\left(N_{i}, k\right)\) 其中,\(\star\) 为 cross-correlation 算子,\(N\) 是batch size,\(C\) 是通道数量,\(L\) 是序列长度。

MindSpore:与PyTorch实现的功能基本一致,但默认不添加偏置参数,与PyTorch相反。且MindSpore默认对输入进行填充,而PyTorch则默认不填充。同时MindSpore填充模式可选项与PyTorch不同,PyTorch的参数padding_mode可选项有‘zeros’、’reflect’、’replicate’、’circular’,含义如下:

zero:常量填充(默认零填充)。

reflect:反射填充。

replicate:复制填充。

circular:循环填充。

而MindSpore的参数pad_mode可选项有’same’、’valid’、’pad’,含义如下:

same:输出的宽度与输入整除 stride 后的值相同。

valid:不填充。

pad:零填充。

分类

子类

PyTorch

MindSpore

差异

参数

参数1

in_channels

in_channels

-

参数2

out_channels

out_channels

-

参数3

kernel_size

kernel_size

-

参数4

stride

stride

-

参数5

padding

padding

-

参数6

dilation

dilation

-

参数7

groups

group

功能一致,参数名不同

参数8

bias

has_bias

功能一致,参数名不同,默认值不同

参数9

padding_mode

pad_mode

PyTorch与MindSpore可选项不同,默认值不同

参数10

-

weight_init

权重参数的初始化方法

参数11

-

bias_init

偏置参数的初始化方法

输入

单输入

input

x

功能一致,参数名不同

代码示例1

PyTorch的参数bias默认值为True,即默认添加偏置参数,而MindSpore的参数has_bias默认值为False,即默认不添加偏置函数,如果需要添加偏置参数,需要将has_bias的值设置为True。

# PyTorch
import torch
from torch import tensor
import numpy as np

x_ = np.ones((1, 120, 640))
x = tensor(x_, dtype=torch.float32)
net = torch.nn.Conv1d(120, 240, 4)
output = net(x).detach().numpy().shape
print(output)
# (1, 240, 637)

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

x_ = np.ones((1, 120, 640))
x = Tensor(x_, mindspore.float32)
net = nn.Conv1d(120, 240, 4, has_bias=True, pad_mode='valid')
output = net(x).shape
print(output)
# (1, 240, 637)

代码示例2

PyTorch的参数padding_mode为’zero’时,表示对输入进行零填充,而MindSpore中实现零填充需设置参数pad_mode为’pad’。

# PyTorch
import torch
from torch import tensor
import numpy as np

x_ = np.ones((1, 120, 640))
x = tensor(x_, dtype=torch.float32)
net = torch.nn.Conv1d(120, 240, 4, padding=1, padding_mode='zeros')
output = net(x).detach().numpy().shape
print(output)
# (1, 240, 639)

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

x_ = np.ones((1, 120, 640))
x = Tensor(x_, mindspore.float32)
net = nn.Conv1d(120, 240, 4, padding=1, pad_mode='pad')
output = net(x).shape
print(output)
# (1, 240, 639)

代码示例3

PyTorch的参数padding_mode为’reflect’时,表示对输入进行反射填充,而MindSpore中实现反射填充需通过API组合实现,首先调用nn.Pad对输入x进行反射填充,再对填充后的结果进行卷积操作。

# PyTorch
import torch
from torch import tensor
import numpy as np

x_ = np.ones((1, 120, 640))
x = tensor(x_, dtype=torch.float32)
net = torch.nn.Conv1d(120, 240, 4, padding=1, padding_mode='reflect')
output = net(x).detach().numpy().shape
print(output)
# (1, 240, 639)

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np
x_ = np.ones((1, 120, 640))
x = Tensor(x_, mindspore.float32)
pad = nn.Pad(paddings=((0,0),(1,1),(1,1)), mode="REFLECT")
x_pad = pad(x)
net = nn.Conv1d(122, 240, 4, padding=0, pad_mode='valid')
output = net(x_pad).shape
print(output)
# (1, 240, 639)

代码示例4

PyTorch默认情况下不对输入进行填充,而MindSpore默认情况下需要对输入进行填充,如果不对输入进行填充,需要将pad_mode设置为’valid’。

# PyTorch
import torch
from torch import tensor
import numpy as np

x_ = np.ones((1, 120, 640))
x = tensor(x_, dtype=torch.float32)
net = torch.nn.Conv1d(120, 240, 4)
output = net(x).detach().numpy().shape
print(output)
# (1, 240, 637)

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

x_ = np.ones((1, 120, 640))
x = Tensor(x_, mindspore.float32)
net = nn.Conv1d(120, 240, 4, pad_mode='valid')
output = net(x).shape
print(output)
# (1, 240, 637)