mindspore.dataset.NumpySlicesDataset

class mindspore.dataset.NumpySlicesDataset(data, column_names=None, num_samples=None, num_parallel_workers=1, shuffle=None, sampler=None, num_shards=None, shard_id=None)[源代码]

由Python数据构建数据集。生成的数据集的列名和列类型取决于用户传入的Python数据。

参数:
  • data (Union[list, tuple, dict]) - 输入的Python数据。支持的数据类型包括:list、tuple、dict和其他NumPy格式。 输入数据将沿着第一个维度切片,并生成额外的行。如果输入是单个list,则将生成一个数据列,若是嵌套多个list,则生成多个数据列。不建议通过这种方式加载大量的数据,因为可能会在数据加载到内存时等待较长时间。

  • column_names (list[str], 可选) - 指定数据集生成的列名。默认值:None,不指定。 如果未指定该参数,且当输入数据的类型是dict时,输出列名称将被命名为dict的键名,否则它们将被统一命名为column_0,column_1…。

  • num_samples (int, 可选) - 指定从数据集中读取的样本数。默认值:None,所有样本。

  • num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值:1。

  • shuffle (bool, 可选) - 是否混洗数据集。 只有输入的 data 参数带有可随机访问属性(__getitem__)时,才可以指定该参数。默认值:None。下表中会展示不同配置的预期行为。

  • sampler (Union[Sampler, Iterable], 可选) - 指定从数据集中选取样本的采样器。 只有输入的 data 参数带有可随机访问属性(__getitem__)时,才可以指定该参数。默认值:None。下表中会展示不同配置的预期行为。

  • num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值:None。指定此参数后, num_samples 表示每个分片的最大样本数。

  • shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值:None。只有当指定了 num_shards 时才能指定此参数。

说明

此数据集可以指定参数 sampler ,但参数 sampler 和参数 shuffle 的行为是互斥的。下表展示了几种合法的输入参数组合及预期的行为。

配置 samplershuffle 的不同组合得到的预期排序结果

参数 sampler

参数 shuffle

预期数据顺序

None

None

随机排列

None

True

随机排列

None

False

顺序排列

sampler 实例

None

sampler 行为定义的顺序

sampler 实例

True

不允许

sampler 实例

False

不允许

异常:
  • RuntimeError - column_names 列表的长度与数据的输出列表长度不匹配。

  • ValueError - num_parallel_workers 参数超过系统最大线程数。

  • ValueError - 同时指定了 samplershuffle 参数。

  • ValueError - 同时指定了 samplernum_shards 参数或同时指定了 samplershard_id 参数。

  • ValueError - 指定了 num_shards 参数,但是未指定 shard_id 参数。

  • ValueError - 指定了 shard_id 参数,但是未指定 num_shards 参数。

  • ValueError - shard_id 参数错误,小于0或者大于等于 num_shards

样例:

>>> # 1) Input data can be a list
>>> data = [1, 2, 3]
>>> dataset = ds.NumpySlicesDataset(data=data, column_names=["column_1"])
>>>
>>> # 2) Input data can be a dictionary, and column_names will be its keys
>>> data = {"a": [1, 2], "b": [3, 4]}
>>> dataset = ds.NumpySlicesDataset(data=data)
>>>
>>> # 3) Input data can be a tuple of lists (or NumPy arrays), each tuple element refers to data in each column
>>> data = ([1, 2], [3, 4], [5, 6])
>>> dataset = ds.NumpySlicesDataset(data=data, column_names=["column_1", "column_2", "column_3"])
>>>
>>> # 4) Load data from CSV file
>>> import pandas as pd
>>> df = pd.read_csv(filepath_or_buffer=csv_dataset_dir[0])
>>> dataset = ds.NumpySlicesDataset(data=dict(df), shuffle=False)

预处理操作

mindspore.dataset.Dataset.apply

对数据集对象执行给定操作函数。

mindspore.dataset.Dataset.concat

对传入的多个数据集对象进行拼接操作。

mindspore.dataset.Dataset.filter

通过自定义判断条件对数据集对象中的数据进行过滤。

mindspore.dataset.Dataset.flat_map

对数据集对象中每一条数据执行给定的数据处理,并将结果展平。

mindspore.dataset.Dataset.map

给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。

mindspore.dataset.Dataset.project

从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。

mindspore.dataset.Dataset.rename

对数据集对象按指定的列名进行重命名。

mindspore.dataset.Dataset.repeat

重复此数据集 count 次。

mindspore.dataset.Dataset.reset

重置下一个epoch的数据集对象。

mindspore.dataset.Dataset.save

将数据处理管道中正处理的数据保存为通用的数据集格式。

mindspore.dataset.Dataset.shuffle

通过创建 buffer_size 大小的缓存来混洗该数据集。

mindspore.dataset.Dataset.skip

跳过此数据集对象的前 count 条数据。

mindspore.dataset.Dataset.split

将数据集拆分为多个不重叠的子数据集。

mindspore.dataset.Dataset.take

从数据集中获取最多 count 的元素。

mindspore.dataset.Dataset.zip

将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。

mindspore.dataset.TextBaseDataset.build_sentencepiece_vocab

迭代源数据集对象获取数据并构建SentencePiece词汇表。

mindspore.dataset.TextBaseDataset.build_vocab

迭代源数据集对象获取数据并构建词汇表。

Batch(批操作)

mindspore.dataset.Dataset.batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。

mindspore.dataset.Dataset.bucket_batch_by_length

根据数据的长度进行分桶。

mindspore.dataset.Dataset.padded_batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。

迭代器

mindspore.dataset.Dataset.create_dict_iterator

基于数据集对象创建迭代器。

mindspore.dataset.Dataset.create_tuple_iterator

基于数据集对象创建迭代器。

数据集属性

mindspore.dataset.Dataset.get_batch_size

获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。

mindspore.dataset.Dataset.get_class_indexing

返回类别索引。

mindspore.dataset.Dataset.get_col_names

返回数据集对象中包含的列名。

mindspore.dataset.Dataset.get_dataset_size

返回一个epoch中的batch数。

mindspore.dataset.Dataset.get_repeat_count

获取 RepeatDataset 中定义的repeat操作的次数。

mindspore.dataset.Dataset.input_indexs

获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。

mindspore.dataset.Dataset.num_classes

获取数据集对象中所有样本的类别数目。

mindspore.dataset.Dataset.output_shapes

获取数据集对象中每列数据的shape。

mindspore.dataset.Dataset.output_types

获取数据集对象中每列数据的数据类型。

应用采样方法

mindspore.dataset.MappableDataset.add_sampler

为当前数据集添加子采样器。

mindspore.dataset.MappableDataset.use_sampler

替换当前数据集的最末子采样器,保持父采样器不变。

其他方法

mindspore.dataset.Dataset.device_que

将数据异步传输到Ascend/GPU设备上。

mindspore.dataset.Dataset.sync_update

释放阻塞条件并使用给定数据触发回调函数。

mindspore.dataset.Dataset.sync_wait

为同步操作在数据集对象上添加阻塞条件。

mindspore.dataset.Dataset.to_json

将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。