mindspore.dataset.DIV2KDataset
- class mindspore.dataset.DIV2KDataset(dataset_dir, usage='train', downgrade='bicubic', scale=2, num_samples=None, num_parallel_workers=None, shuffle=None, decode=None, sampler=None, num_shards=None, shard_id=None, cache=None)[源代码]
读取和解析DIV2K数据集的源文件构建数据集。
生成的数据集有两列 [hr_image, lr_image] 。 hr_image 列和 lr_image 列的数据类型都为uint8。
- 参数:
dataset_dir (str) - 包含数据集文件的根目录路径。
usage (str, 可选) - 指定数据集的子集。可取值为 ‘train’、 ‘valid’或 ‘all’。默认值:’train’。
downgrade (str, 可选) - 指定数据集的下采样的模式,可取值为 ‘bicubic’、 ‘unknown’、 ‘mild’、 ‘difficult’或 ‘wild’。默认值:’bicubic’。
scale (str, 可选) - 指定数据集的缩放尺度。当参数 downgrade 取值为 ‘bicubic’时,此参数可以取值为2、3、4、8。 当参数 downgrade 取值为 ‘unknown’时,此参数可以取值为2、3、4。当参数 downgrade 取值为 ‘mild’、 ‘difficult’、 ‘wild’时,此参数仅可以取值为4。默认值:2。
num_samples (int, 可选) - 指定从数据集中读取的样本数,可以小于数据集总数。默认值:None,读取全部样本图片。
num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值:None,使用mindspore.dataset.config中配置的线程数。
shuffle (bool, 可选) - 是否混洗数据集。默认值:None。下表中会展示不同参数配置的预期行为。
decode (bool, 可选) - 是否对读取的图片进行解码操作。默认值:False,不解码。
sampler (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值:None。下表中会展示不同配置的预期行为。
num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值:None。指定此参数后, num_samples 表示每个分片的最大样本数。
shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值:None。只有当指定了 num_shards 时才能指定此参数。
cache (DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值:None,不使用缓存。
- 异常:
RuntimeError - dataset_dir 路径下不包含任何数据文件。
ValueError - num_parallel_workers 参数超过系统最大线程数。
RuntimeError - 同时指定了 sampler 和 shuffle 参数。
RuntimeError - 同时指定了 sampler 和 num_shards 参数或同时指定了 sampler 和 shard_id 参数。
RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。
RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。
ValueError - dataset_dir 路径非法或不存在。
ValueError - usage 参数取值不为 ‘train’、 ‘valid’或 ‘all’。
ValueError - downgrade 参数取值不为 ‘bicubic’、 ‘unknown’、 ‘mild’、 ‘difficult’或 ‘wild’。
ValueError - scale 参数取值不在给定的字段中,或与 downgrade 参数的值不匹配。
ValueError - scale 参数取值为8,但 downgrade 参数的值不为 ‘bicubic’。
ValueError - downgrade 参数取值为 ‘mild’、 ‘difficult’或 ‘wild’,但 scale 参数的值不为4。
ValueError - shard_id 参数错误,小于0或者大于等于 num_shards 。
说明
此数据集可以指定参数 sampler ,但参数 sampler 和参数 shuffle 的行为是互斥的。下表展示了几种合法的输入参数组合及预期的行为。
参数 sampler
参数 shuffle
预期数据顺序
None
None
随机排列
None
True
随机排列
None
False
顺序排列
sampler 实例
None
由 sampler 行为定义的顺序
sampler 实例
True
不允许
sampler 实例
False
不允许
关于DIV2K数据集:
DIV2K数据集由1000张2K分辨率图像组成,其中800张用于训练,100张用于验证,100张用于测试。 作为NTIRE比赛的数据集,NTIRE 2017 和 NTIRE 2018 仅包括DIV2K的训练数据集和验证数据集。
您可以解压缩原始DIV2K数据集文件到如下目录结构,并通过MindSpore的API进行读取。
以训练数据集作为例子。
. └── DIV2K ├── DIV2K_train_HR | ├── 0001.png | ├── 0002.png | ├── ... ├── DIV2K_train_LR_bicubic | ├── X2 | | ├── 0001x2.png | | ├── 0002x2.png | | ├── ... | ├── X3 | | ├── 0001x3.png | | ├── 0002x3.png | | ├── ... | └── X4 | ├── 0001x4.png | ├── 0002x4.png | ├── ... ├── DIV2K_train_LR_unknown | ├── X2 | | ├── 0001x2.png | | ├── 0002x2.png | | ├── ... | ├── X3 | | ├── 0001x3.png | | ├── 0002x3.png | | ├── ... | └── X4 | ├── 0001x4.png | ├── 0002x4.png | ├── ... ├── DIV2K_train_LR_mild | ├── 0001x4m.png | ├── 0002x4m.png | ├── ... ├── DIV2K_train_LR_difficult | ├── 0001x4d.png | ├── 0002x4d.png | ├── ... ├── DIV2K_train_LR_wild | ├── 0001x4w.png | ├── 0002x4w.png | ├── ... └── DIV2K_train_LR_x8 ├── 0001x8.png ├── 0002x8.png ├── ...
引用:
@InProceedings{Agustsson_2017_CVPR_Workshops, author = {Agustsson, Eirikur and Timofte, Radu}, title = {NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, url = "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-CVPRW-2017.pdf", month = {July}, year = {2017} }
样例:
>>> div2k_dataset_dir = "/path/to/div2k_dataset_directory" >>> >>> # 1) Get all samples from DIV2K dataset in sequence >>> dataset = ds.DIV2KDataset(dataset_dir=div2k_dataset_dir, usage="train", scale=2, downgrade="bicubic", ... shuffle=False) >>> >>> # 2) Randomly select 350 samples from DIV2K dataset >>> dataset = ds.DIV2KDataset(dataset_dir=div2k_dataset_dir, usage="train", scale=2, downgrade="bicubic", ... num_samples=350, shuffle=True) >>> >>> # 3) Get samples from DIV2K dataset for shard 0 in a 2-way distributed training >>> dataset = ds.DIV2KDataset(dataset_dir=div2k_dataset_dir, usage="train", scale=2, downgrade="bicubic", ... num_shards=2, shard_id=0) >>> >>> # In DIV2K dataset, each dictionary has keys "hr_image" and "lr_image"
预处理操作
对数据集对象执行给定操作函数。 |
|
对传入的多个数据集对象进行拼接操作。 |
|
通过自定义判断条件对数据集对象中的数据进行过滤。 |
|
对数据集对象中每一条数据执行给定的数据处理,并将结果展平。 |
|
给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。 |
|
从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。 |
|
对数据集对象按指定的列名进行重命名。 |
|
重复此数据集 count 次。 |
|
重置下一个epoch的数据集对象。 |
|
将数据处理管道中正处理的数据保存为通用的数据集格式。 |
|
通过创建 buffer_size 大小的缓存来混洗该数据集。 |
|
跳过此数据集对象的前 count 条数据。 |
|
将数据集拆分为多个不重叠的子数据集。 |
|
从数据集中获取最多 count 的元素。 |
|
将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。 |
Batch(批操作)
将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。 |
|
根据数据的长度进行分桶。 |
|
将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。 |
迭代器
基于数据集对象创建迭代器。 |
|
基于数据集对象创建迭代器。 |
数据集属性
获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。 |
|
返回类别索引。 |
|
返回数据集对象中包含的列名。 |
|
返回一个epoch中的batch数。 |
|
获取 RepeatDataset 中定义的repeat操作的次数。 |
|
获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。 |
|
获取数据集对象中所有样本的类别数目。 |
|
获取数据集对象中每列数据的shape。 |
|
获取数据集对象中每列数据的数据类型。 |
应用采样方法
为当前数据集添加子采样器。 |
|
替换当前数据集的最末子采样器,保持父采样器不变。 |
其他方法
将数据异步传输到Ascend/GPU设备上。 |
|
释放阻塞条件并使用给定数据触发回调函数。 |
|
为同步操作在数据集对象上添加阻塞条件。 |
|
将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。 |