mindspore.parallel.shard 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""pynative shard"""

import mindspore as ms
from mindspore import log as logger
from mindspore._c_expression import Shard_


class Shard(Shard_):
    """Shard operation"""

    def __init__(self):
        """Initialize Shard."""
        Shard_.__init__(self, 'Shard')
        self.shard_fn = None
        self.fn = None
        self.in_strategy = None
        self.out_strategy = None
        self.parameter_plan = None
        self.device = None
        self.level = None

    def __call__(self, fn, in_strategy, out_strategy=None, parameter_plan=None, device="Ascend", level=0):
        if ms.context.get_context("mode") != ms.context.PYNATIVE_MODE or \
                ms.context.get_auto_parallel_context("parallel_mode") not in ["auto_parallel"]:
            raise AssertionError(f"Cell shard only supports auto parallel under PyNative mode.")
        if ms.context.get_context("device_target") not in ["Ascend", "GPU"]:
            raise AssertionError(f"'Shard' now only supports 'Ascend' and 'GPU'")
        if ms.context.get_auto_parallel_context("search_mode") != "sharding_propagation":
            raise AssertionError(f"'search_mode' must be 'sharding_propagation' for 'Shard'")
        if not isinstance(in_strategy, tuple):
            raise TypeError(f"For 'Shard', the 'in_strategy' should be a tuple, but got {type(in_strategy).__name__}")
        if not isinstance(out_strategy, (type(None), tuple)):
            raise TypeError(f"For 'Shard', the 'out_strategy' should be None or tuple, "
                            f"but got {type(out_strategy).__name__}")

        if not isinstance(device, str):
            raise TypeError(f"For 'Shard', the 'device' should be a string, "
                            f"but got {type(device).__name__}")
        if not isinstance(level, int):
            raise TypeError(f"For 'Shard', the 'level' should be an integer, "
                            f"but got {type(level).__name__}")

        if ms.get_algo_parameters("fully_use_devices") is True:
            logger.warning("After calling 'shard', the environment variable 'fully_use_devices' "
                           "will be overwritten as False.")
            ms.set_algo_parameters(fully_use_devices=False)

        if ms.context.get_auto_parallel_context("full_batch_is_set") is False:
            logger.warning("When calling the shard interface, "
                           "'dataset_strategy' or 'full_batch' is not manually set by the user, "
                           "and the 'dataset_strategy' will be set to 'full_batch'.")
            ms.context.set_auto_parallel_context(dataset_strategy="full_batch")

        if self._is_attrs_has_been_set(fn, in_strategy, out_strategy, device, level):
            return self.shard_fn
        shard_ = Shard()

        if isinstance(fn, ms.nn.Cell):
            for param in fn.trainable_params():
                param.is_in_shard = True

        # Set parameter layout to corresponding parameter
        self._set_param_layout_into_parameter(fn, parameter_plan)

        def shard_fn(*args):
            @ms.common.jit(hash_args=fn)
            def after_shard(*args):
                return shard_(fn, in_strategy, out_strategy, device, level)(*args)

            return after_shard(*args)

        self.shard_fn = shard_fn
        self.fn = fn
        self.in_strategy = in_strategy
        self.out_strategy = out_strategy
        self.device = device
        self.level = level
        return self.shard_fn

    @staticmethod
    def _search_parameter_by_name(param_name: str, net):
        param_name = param_name.replace("self.", "")
        for param in net.trainable_params():
            if param.name == param_name:
                return param
        return None

    @staticmethod
    def _check_layout_is_valid(param_name, param_shape, param_strategy):
        if len(param_strategy) != len(param_shape):
            raise ValueError(f"For {param_name}, the length of param_strategy: {len(param_strategy)}, "
                             f"is not equal to param_shape len: {len(param_shape)}.")
        for i, _ in enumerate(param_strategy):
            if param_shape[i] % param_strategy[i] != 0:
                raise ValueError(f"For '{param_name}', the param_shape is {param_shape} and "
                                 f"the setting param_strategy is {param_strategy}. "
                                 f"The param_shape[{i}]: {param_shape[i]} cannot be divisible by "
                                 f"param_strategy[{i}]: {param_strategy[i]}.")

    def _set_param_layout_into_parameter(self, fn, parameter_plan):
        """ Set param_strategy into parameter if fn is a Cell and parameter_plan is a dict."""
        if parameter_plan is None:
            return
        if isinstance(parameter_plan, dict):
            if not isinstance(fn, ms.nn.Cell):
                raise TypeError(f"If parameter_plan is set, type of fn must be mindspore.nn.Cell, but got {type(fn)}")
            for k in parameter_plan.keys():
                v = parameter_plan[k]
                if not isinstance(k, str) or not isinstance(v, tuple):
                    raise TypeError(f"For 'Shard', the type of each key and value in 'parameter_plan' must be str and "
                                    f"tuple, but got {type(k).__name__} and {type(v).__name__}")
        else:
            raise TypeError(f"For 'Shard', the 'parameter_plan' should be a dict or None, "
                            f"but got {type(parameter_plan).__name__}")

        for param_name in parameter_plan.keys():
            param_strategy = parameter_plan[param_name]
            param = self._search_parameter_by_name(param_name, fn)
            if param is None:
                logger.warning(f"{param_name} is not exist, ignored its setting.")
                continue

            self._check_layout_is_valid(param_name, param.shape, param_strategy)
            if param.param_info.param_strategy:
                logger.warning(f"The layout of parameter '{param_name}' "
                               f"has been set to {param.param_info.param_strategy}, "
                               f"current setting {param_strategy} will be ignored.")
            param.param_info.param_strategy = param_strategy

    def _is_attrs_has_been_set(self, fn, in_strategy, out_strategy, device, level):
        return self.shard_fn is not None and self.fn == fn and self.in_strategy == in_strategy and \
               self.out_strategy == out_strategy and self.device == device and self.level == level


[文档]def shard(fn, in_strategy, out_strategy=None, parameter_plan=None, device="Ascend", level=0): """ Defining the input and output layouts of this cell and the parallel strategies of remaining ops will be generated by sharding propagation. In PyNative mode, use this method to specify a Cell for distributed execution in graph mode. in_strategy and out_strategy define the input and output layout respectively. in_strategy/out_strategy should be a tuple, each element of which corresponds to the desired layout of this input/output, and None represents data_parallel, which can refer to the description of `mindspore.ops.Primitive.shard`. The parallel strategies of remaining operators are derived from the strategy specified by the input and output. Note: You need to set the execution mode to PyNative mode, set the parallel mode in `set_auto_parallel_context` to "auto_parallel" and the search mode to "sharding_propagation". If the input contain Parameter, its strategy should be set in `in_strategy`. Args: fn (Union[Cell, Function]): Function to be executed in parallel. Its arguments and return value must be Tensor or Parameter. If fn is a Cell with parameters, fn needs to be an instantiated object, otherwise its arguments cannot be accessed. in_strategy (tuple): Define the layout of inputs, each element of the tuple should be a tuple or None. Tuple defines the layout of the corresponding input and None represents a data parallel strategy. out_strategy (Union[tuple, None]): Define the layout of outputs similar with in_strategy. It is not in use right now. Default: None. parameter_plan (Union[dict, None]): Define the layout for the specified parameters. Each element in dict defines the layout of the parameter like "param_name: layout". The key is a parameter name of type 'str'. The value is a 1-D integer tuple, indicating the corresponding layout. If the parameter name is incorrect or the corresponding parameter has been set, the parameter setting will be ignored. Default: None. device (string): Select a certain device target. It is not in use right now. Support ["CPU", "GPU", "Ascend"]. Default: "Ascend". level (int): Option for parallel strategy infer algorithm, namely the object function, maximize computation over communication ratio, maximize speed performance, minimize memory usage etc. It is not in use right now. Support ["0", "1", "2"]. Default: "0". Returns: Function, return the function that will be executed under auto parallel process. Raises: AssertionError: - If execute mode is not PYNATIVE_MODE. - If parallel mode is not "auto_parallel". - If search_mode it not "sharding_propagation". - If device_target it not "Ascend" or "GPU". TypeError: - If `in_strategy` is not a tuple. - If `out_strategy` is not a tuple or None. - If `parameter_plan` is not a dict or None. - If any key in `parameter_plan` is not a str. - If any value in `parameter_plan` is not a tuple. - If `device` is not a str. - If `level` is not a integer. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, set_context, set_auto_parallel_context, shard, PYNATIVE_MODE >>> from mindspore.communication import init >>> set_context(mode=PYNATIVE_MODE) >>> init() >>> set_auto_parallel_context(parallel_mode="auto_parallel", search_mode="sharding_propagation", ... device_num=2) >>> def test_shard(x, y): ... return x + y >>> x = Tensor(np.ones(shape=(32, 10))) >>> y = Tensor(np.ones(shape=(32, 10))) >>> output = shard(test_shard, in_strategy=((2, 1), (2, 1)))(x, y) >>> print(output.shape) (32, 10) """ if not isinstance(fn, (ms.nn.Cell)): logger.warning("'fn' is not a mindspore.nn.Cell, and its definition cannot involve Parameter; " "otherwise, the result may be incorrect.") return Shard()(fn, in_strategy, out_strategy, parameter_plan, device, level)