mindspore.ops.function.clip_func 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Defines clip operators with functional form."""

from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.ops._primitive_cache import _get_cache_prim
from mindspore.common.tensor import Tensor

__all__ = [
    'clip_by_value',
]

hyper_map = C.HyperMap()
max_op = _get_cache_prim(P.Maximum)()
min_op = _get_cache_prim(P.Minimum)()
cast_op = _get_cache_prim(P.Cast)()
scalar2tensor_op = _get_cache_prim(P.ScalarToTensor)()
partial_op = _get_cache_prim(P.Partial)()


[文档]def clip_by_value(x, clip_value_min=None, clip_value_max=None): r""" Clips tensor values to a specified min and max. Limits the value of :math:`x` to a range, whose lower limit is `clip_value_min` and upper limit is `clip_value_max` . .. math:: out_i= \left\{ \begin{array}{align} clip\_value\_max & \text{ if } x_i\ge clip\_value\_max \\ x_i & \text{ if } clip\_value\_min \lt x_i \lt clip\_value\_max \\ clip\_value\_min & \text{ if } x_i \le clip\_value\_min \\ \end{array}\right. Note: - `clip_value_min` and `clip_value_max` cannot be None at the same time; - When `clip_value_min` is None and `clip_value_max` is not None, the elements in Tensor larger than `clip_value_max` will become `clip_value_max`; - When `clip_value_min` is not None and `clip_value_max` is None, the elements in Tensor smaller than `clip_value_min` will become `clip_value_min`; - If `clip_value_min` is greater than `clip_value_max`, the value of all elements in Tensor will be set to `clip_value_max`; - The data type of `x`, `clip_value_min` and `clip_value_max` should support implicit type conversion and cannot be bool type. Args: x (Union(Tensor, list[Tensor], tuple[Tensor])): Input data, which type is Tensor or a list or tuple of Tensor. The shape of Tensor is :math:`(N,*)` where :math:`*` means, any number of additional dimensions. clip_value_min (Union(Tensor, float, int)): The minimum value. Default: None. clip_value_max (Union(Tensor, float, int)): The maximum value. Default: None. Returns: (Union(Tensor, tuple[Tensor], list[Tensor])), a clipped Tensor or a tuple or a list of clipped Tensor. The data type and shape are the same as x. Raises: ValueError: If both `clip_value_min` and `clip_value_max` are None. TypeError: If the type of `x` is not in Tensor or list[Tensor] or tuple[Tensor]. TypeError: If the type of `clip_value_min` is not in None, Tensor, float or int. TypeError: If the type of `clip_value_max` is not in None, Tensor, float or int. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> # case 1: the data type of x is Tensor >>> from mindspore import Tensor, ops >>> import numpy as np >>> min_value = Tensor(5, mindspore.float32) >>> max_value = Tensor(20, mindspore.float32) >>> x = Tensor(np.array([[1., 25., 5., 7.], [4., 11., 6., 21.]]), mindspore.float32) >>> output = ops.clip_by_value(x, min_value, max_value) >>> print(output) [[ 5. 20. 5. 7.] [ 5. 11. 6. 20.]] >>> # case 2: the data type of x is list[Tensor] >>> min_value = 5 >>> max_value = 20 >>> x = Tensor(np.array([[1., 25., 5., 7.], [4., 11., 6., 21.]]), mindspore.float32) >>> y = Tensor(np.array([[1., 25., 5., 7.], [4., 11., 6., 21.]]), mindspore.float32) >>> output = ops.clip_by_value([x,y], min_value, max_value) >>> print(output) [[[ 5. 20. 5. 7.] [ 5. 11. 6. 20.]], [[ 5. 20. 5. 7.] [ 5. 11. 6. 20.]]] """ def _clip_by_value(clip_min, clip_max, x): if not isinstance(x, Tensor): TypeError("Then type of 'x' must be Tensor") result = x if clip_min is not None: result = max_op(result, cast_op(clip_min, x.dtype)) if clip_max is not None: result = min_op(result, cast_op(clip_max, x.dtype)) return result if clip_value_min is None and clip_value_max is None: ValueError("At least one of 'clip_value_min' or 'clip_value_max' must not be None") if not isinstance(x, (Tensor, tuple, list)): TypeError("The input of 'clip_by_value' must be tensor or tuple[Tensor] or list[Tensor]") if not isinstance(clip_value_min, (type(None), Tensor, float, int)): TypeError("Then type of 'clip_value_min' must be not one of None, Tensor, float, int.") if not isinstance(clip_value_max, (type(None), Tensor, float, int)): TypeError("Then type of 'clip_value_max' must be not one of None, Tensor, float, int.") if isinstance(clip_value_min, (float, int)): clip_value_min = scalar2tensor_op(clip_value_min) if isinstance(clip_value_max, (float, int)): clip_value_max = scalar2tensor_op(clip_value_max) if isinstance(x, Tensor): return _clip_by_value(clip_value_min, clip_value_max, x) results = hyper_map(partial_op(_clip_by_value, clip_value_min, clip_value_max), x) if isinstance(x, tuple): results = tuple(results) return results