mindspore.nn.probability.distribution.student_t 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""StudentT Distribution"""
from __future__ import absolute_import
from __future__ import division
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore._checkparam import Validator
from mindspore.common import dtype as mstype
from mindspore.nn.probability.distribution import Distribution
from mindspore.nn.probability.distribution._utils.utils import check_greater_zero


[文档]class StudentT(Distribution): r""" StudentT distribution. A StudentT distribution is a continuous distribution with the range :math:`[-\inf, \inf)` and the probability density function: .. math:: f(x, \nu, \mu, \sigma) = (1 + y^2 / \nu)^{(-0.5*(\nu + 1))} / Z where :math:`y = (x-\mu)/\sigma`, :math:`Z = abs(\sigma)*\sqrt(\nu * \pi)*\Gamma(0.5 * \nu)/\Gamma(0.5*(\nu + 1))`, :math:`\nu, \mu, \sigma` are the degrees of freedom , mean and scale of the laplace distribution respectively. Args: df (int, float, list, numpy.ndarray, Tensor): The degrees of freedom. Default: None. mean (int, float, list, numpy.ndarray, Tensor): The mean of the distribution. Default: None. sd (int, float, list, numpy.ndarray, Tensor): The standard deviation of the distribution. Default: None. seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. name (str): The name of the distribution. Default: 'StudentT'. Note: - `df` must be greater than zero. - `sd` must be greater than zero. - `dist_spec_args` are `mean` and `sd`. - `dtype` must be a float type because StudentT distributions are continuous. Raises: ValueError: When df <= 0. ValueError: When sd <= 0. TypeError: When the input `dtype` is not a subclass of float. Supported Platforms: ``CPU`` Examples: >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.distribution as msd >>> from mindspore import Tensor >>> # To initialize a StudentT distribution of the df 2.0, the mean 3.0 and the standard deviation 4.0. >>> n1 = msd.StudentT(2.0, 3.0, 4.0, dtype=mindspore.float32) >>> # A StudentT distribution can be initialized without arguments. >>> # In this case, `df`, `mean` and `sd` must be passed in through arguments. >>> n2 = msd.StudentT(dtype=mindspore.float32) >>> # Here are some tensors used below for testing >>> value = Tensor([1.0, 2.0, 3.0], dtype=mindspore.float32) >>> df_a = Tensor([2.0], dtype=mindspore.float32) >>> mean_a = Tensor([2.0], dtype=mindspore.float32) >>> sd_a = Tensor([2.0, 2.0, 2.0], dtype=mindspore.float32) >>> df_b = Tensor([1.0], dtype=mindspore.float32) >>> mean_b = Tensor([1.0], dtype=mindspore.float32) >>> sd_b = Tensor([1.0, 1.5, 2.0], dtype=mindspore.float32) >>> ans = n1.log_prob(value) >>> print(ans.shape) (3,) >>> # Evaluate with respect to the distribution b. >>> ans = n1.log_prob(value, df_b, mean_b, sd_b) >>> print(ans.shape) (3,) >>> # `mean` and `sd` must be passed in during function calls >>> ans = n2.log_prob(value, df_a, mean_a, sd_a) >>> print(ans.shape) (3,) """ def __init__(self, df=None, mean=None, sd=None, seed=None, dtype=mstype.float32, name="StudentT"): """ Constructor of StudentT. """ param = dict(locals()) param['param_dict'] = {'df': df, 'mean': mean, 'sd': sd} valid_dtype = mstype.float_type Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__) super(StudentT, self).__init__(seed, dtype, name, param) self._df_value = self._add_parameter(df, 'df') self._mean_value = self._add_parameter(mean, 'mean') self._sd_value = self._add_parameter(sd, 'sd') if self._sd_value is not None: check_greater_zero(self._sd_value, "Standard deviation") if self._df_value is not None: check_greater_zero(self._df_value, "Degrees of freedom") self.log1p = P.Log1p() self.log = P.Log() self.cast = P.Cast() self.abs = P.Abs() self.half = 0.5 self.half_log_pi = 0.5 * np.log(np.pi) self.lgamma = nn.LGamma() def _log_prob(self, value, df=None, mean=None, sd=None): r""" Evaluate log probability. Args: value (Tensor): The value to be evaluated. df (Tensor): The degrees of freedom of the distribution. Default: self._df_value. mean (Tensor): The mean of the distribution. Default: self._mean_value. sd (Tensor): The standard deviation the distribution. Default: self._sd_value. .. math:: L(x) = -0.5 * (\nu + 1.) * \log((x - \mu) / \sigma + 1.)) + \log(\sqrt(\pi * \mu * \sigma^2)) + log(\Gamma(\nu / 2.)) - log(\Gamma((\nu + 1.) / 2.)) """ value = self._check_value(value, 'value') value = self.cast(value, self.dtype) df, mean, sd = self._check_param_type(df, mean, sd) y = (value - mean) / sd log_unnormalized_prob = -0.5 * (df + 1.) * self.log1p(y**2. / df) log_normalization = self.log(self.abs(sd)) + 0.5 * self.log(df) + self.half_log_pi + \ self.lgamma(self.half * df) - self.lgamma(self.half * (df + 1.)) return log_unnormalized_prob - log_normalization