mindspore.ops.mean
- mindspore.ops.mean(x, axis=(), keep_dims=False)[源代码]
默认情况下,使用指定维度的平均值代替该维度的其他元素,以移除该维度。也可仅缩小该维度大小至1。 keep_dims 控制输出和输入的维度是否相同。
参数:
x (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: \((N, *)\) ,其中 \(*\) 表示任意数量的附加维度。秩应小于8。
axis (Union[int, tuple(int), list(int)]) - 要减少的维度。默认值: (),缩小所有维度。只允许常量值。假设 x 的秩为r,取值范围[-r,r)。
keep_dims (bool) - 如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
返回:
与输入的张量具有相同的数据类型的Tensor。
如果 axis 为(),且 keep_dims 为False,则输出一个0维Tensor,表示输入Tensor中所有元素的平均值。
如果 axis 为int,取值为1,并且 keep_dims 为False,则输出的shape为 \((x_0, x_2, ..., x_R)\) 。
如果 axis 为tuple(int)或list(int),取值为(1, 2),并且 keep_dims 为False,则输出Tensor的shape为 \((x_0, x_3, ..., x_R)\) 。
异常:
TypeError - x 不是Tensor。
TypeError - axis 不是以下数据类型之一:int、Tuple或List。
TypeError - keep_dims 不是bool类型。
ValueError - axis 超出范围。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> output = ops.mean(x, 1, keep_dims=True) >>> result = output.shape >>> print(result) (3, 1, 5, 6) >>> # case 1: Reduces a dimension by averaging all elements in the dimension. >>> x = Tensor(np.array([[[2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[6, 6, 6, 6, 6, 6], [8, 8, 8, 8, 8, 8], [10, 10, 10, 10, 10, 10]]]), ... mindspore.float32) >>> output = ops.mean(x) >>> print(output) 5.0 >>> print(output.shape) () >>> # case 2: Reduces a dimension along the axis 0 >>> output = ops.mean(x, 0, True) >>> print(output) [[[4. 4. 4. 4. 4. 4.] [5. 5. 5. 5. 5. 5.] [6. 6. 6. 6. 6. 6.]]] >>> # case 3: Reduces a dimension along the axis 1 >>> output = ops.mean(x, 1, True) >>> print(output) [[[2. 2. 2. 2. 2. 2.]] [[5. 5. 5. 5. 5. 5.]] [[8. 8. 8. 8. 8. 8.]]] >>> # case 4: Reduces a dimension along the axis 2 >>> output = ops.mean(x, 2, True) >>> print(output) [[[ 2.] [ 2.] [ 2.]] [[ 4.] [ 5.] [ 6.]] [[ 6.] [ 8.] [10.]]]