文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.WithGradCell

class mindspore.nn.WithGradCell(network, loss_fn=None, sens=None)[源代码]

Cell that returns the gradients.

Wraps the network with backward cell to compute gradients. A network with a loss function is necessary as argument. If loss function in None, the network must be a wrapper of network and loss function. This Cell accepts ‘*inputs’ as inputs and returns gradients for each trainable parameter.

Note

Run in PyNative mode.

Parameters
  • network (Cell) – The target network to wrap. The network only supports single output.

  • loss_fn (Cell) – Primitive loss function used to compute gradients. Default: None.

  • sens (Union[None, Tensor, Scalar, Tuple ...]) – The sensitive for backpropagation, the type and shape must be same as the network output. If None, we will fill one to a same type shape of output value. Default: None.

Inputs:
  • (*inputs) (Tuple(Tensor)) - Tuple of input tensors with shape (N,).

Outputs:

list, a list of Tensors with identical shapes as trainable weights.

Raises

TypeError – If sens is not one of None, Tensor, Scalar or Tuple.

Supported Platforms:

Ascend GPU CPU

Examples

>>> # For a defined network Net without loss function
>>> net = Net()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
>>> grad_net = nn.WithGradCell(net, loss_fn)
>>>
>>> # For a network wrapped with loss function
>>> net = Net()
>>> net_with_criterion = nn.WithLossCell(net, loss_fn)
>>> grad_net = nn.WithGradCell(net_with_criterion)