mindspore.nn.MaxPool2d

class mindspore.nn.MaxPool2d(kernel_size=1, stride=1, pad_mode='valid', data_format='NCHW')[源代码]

对输入的多维数据进行二维的最大池化运算。

在一个输入Tensor上应用2D max pooling,可被视为组成一个2D平面。

通常,输入的形状为 (Nin,Cin,Hin,Win) ,MaxPool2d输出 (Hin,Win) 维度区域最大值。给定 kernel_size(kH,kW)stride ,公式如下。

output(Ni,Cj,h,w)=maxm=0,,kH1maxn=0,,kW1input(Ni,Cj,stride[0]×h+m,stride[1]×w+n)

Note

pad_mode仅支持”same”和”valid”。

参数:

  • kernel_size (Union[int, tuple[int]]) - 指定池化核尺寸大小,如果为整数,则代表池化核的高和宽。如果为tuple,其值必须包含两个整数值分别表示池化核的高和宽。默认值:1。

  • stride (Union[int, tuple[int]]) - 池化操作的移动步长,如果为整数,则代表池化核的高和宽方向的移动步长。如果为tuple,其值必须包含两个整数值分别表示池化核的高和宽的移动步长。默认值:1。

  • pad_mode (str) - 指定池化填充模式,取值为”same”或”valid”,不区分大小写。默认值:”valid”。

    • same - 输出的宽度于输入整数 stride 后的值相同。

    • valid - 在不填充的前提下返回有效计算所得的输出。不满足计算的多余像素会被丢弃。

  • data_format (str) - 输入数据格式可为’NHWC’或’NCHW’。默认值:’NCHW’。

输入:

  • x (Tensor) - shape为 (N,Cin,Hin,Win) 的Tensor。

输出:

shape为 (N,Cout,Hout,Wout) 的Tensor。

异常:

  • TypeError - kernel_sizestrides 既不是整数也不是元组。

  • ValueError - pad_mode 既不是’valid’,也不是’same’,不区分大小写。

  • ValueError - data_format 既不是’NCHW’也不是’NHWC’。

  • ValueError - kernel_sizestrides 小于1。

  • ValueError - x 的shape长度不等于4。

支持平台:

Ascend GPU CPU

样例:

>>> pool = nn.MaxPool2d(kernel_size=3, stride=1)
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
>>> output = pool(x)
>>> print(output.shape)
(1, 2, 2, 2)