mindspore.nn.AdaptiveMaxPool2d

class mindspore.nn.AdaptiveMaxPool2d(output_size, return_indices=False)[源代码]

二维自适应最大池化运算。

对输入Tensor,提供二维自适应最大池化操作,即对于输入任何尺寸,指定输出的尺寸都为H * W。但是输入和输出特征的数目不会变化。

输入和输出数据格式可以是”NCHW”和”CHW”。N是批处理大小,C是通道数,H是特征高度,W是特征宽度。运算如下:

\[\begin{split}\begin{align} h_{start} &= floor(i * H_{in} / H_{out})\\ h_{end} &= ceil((i + 1) * H_{in} / H_{out})\\ w_{start} &= floor(j * W_{in} / W_{out})\\ w_{end} &= ceil((j + 1) * W_{in} / W_{out})\\ Output(i,j) &= {\max Input[h_{start}:h_{end}, w_{start}:w_{end}]} \end{align}\end{split}\]

Note

Ascend平台input_x输入仅支持float16类型。

参数:

  • output_size (Union[int, tuple]) - 输出特征图的尺寸为H * W。可以是int类型的H和W组成的tuple,也可以为一个int值,代表相同H和W,或None,如果是None,则意味着输出大小与输入相同。

  • return_indices (bool) - 如果为True,输出最大值的索引,默认值为False。

输入:

  • input_x (Tensor) - AdaptiveMaxPool2d的输入,为三维或四维的Tensor,数据类型为float16、float32或者float64。

输出:

Tensor,数据类型与 input_x 相同。

输出的shape为 input_x_shape[:len(input_x_shape) - len(out_shape)] + out_shape

异常:

  • TypeError - input_x 不是Tensor。

  • TypeError - input_x 中的数据不是float16, float32, float64.

  • TypeError - output_size 不是int或者tuple。

  • TypeError - return_indices 不是bool。

  • ValueError - output_size 是tuple,但大小不是2。

  • ValueError - input_x 的维度不是CHW或者NCHW。

支持平台:

Ascend GPU CPU

样例:

>>> # case 1: output_size=(None, 2)
>>> input_x = Tensor(np.array([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
...                            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
...                            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]), mindspore.float32)
>>> adaptive_max_pool_2d = nn.AdaptiveMaxPool2d((None, 2))
>>> output = adaptive_max_pool_2d(input_x)
>>> print(output)
[[[2. 3.]
  [5. 6.]
  [8. 9.]]
 [[2. 3.]
  [5. 6.]
  [8. 9.]]
 [[2. 3.]
  [5. 6.]
  [8. 9.]]]
>>> # case 2: output_size=2
>>> adaptive_max_pool_2d = nn.AdaptiveMaxPool2d(2)
>>> output = adaptive_max_pool_2d(input_x)
>>> print(output)
[[[5. 6.]
  [8. 9.]]
 [[5. 6.]
  [8. 9.]]
 [[5. 6.]
  [8. 9.]]]
>>> # case 3: output_size=(1, 2)
>>> adaptive_max_pool_2d = nn.AdaptiveMaxPool2d((1, 2))
>>> output = adaptive_max_pool_2d(input_x)
>>> print(output)
[[[8. 9.]]
 [[8. 9.]]
 [[8. 9.]]]