# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""cell grad"""
from __future__ import absolute_import
from ..cell import Cell
from ...ops import composite as C
from ...ops import operations as P
from ...ops.primitive import Primitive
from ...common import dtype as mstype
from ...common.api import ms_function
class _FirstGrad(Cell):
def __init__(self, fn):
super(_FirstGrad, self).__init__()
self.first_grad_op = C.GradOperation(sens_param=True, get_all=True)
self.fn = fn
def construct(self, u, first_grad_input):
return self.first_grad_op(self.fn)(*first_grad_input, u)
class _JvpFirstGrad(Cell):
def __init__(self):
super(_JvpFirstGrad, self).__init__()
self.first_grad_op = C.GradOperation(sens_param=True, get_all=True)
def construct(self, u, fn, first_grad_input):
return self.first_grad_op(fn)(*first_grad_input, u)
class _FirstGradSingleValue(Cell):
def __init__(self, fn):
super(_FirstGradSingleValue, self).__init__()
self.first_grad_single_value_op = C.GradOperation(sens_param=True)
self.fn = fn
def construct(self, u, first_grad_single_value_input):
return self.first_grad_single_value_op(self.fn)(*first_grad_single_value_input, u)
class _JvpFirstGradSingleValue(Cell):
def __init__(self):
super(_JvpFirstGradSingleValue, self).__init__()
self.first_grad_single_value_op = C.GradOperation(sens_param=True)
def construct(self, u, fn, first_grad_single_value_input):
return self.first_grad_single_value_op(fn)(*first_grad_single_value_input, u)
[文档]class Jvp(Cell):
"""
Compute the jacobian-vector-product of the given fn. Jvp is equivalent to forward mode autodiff.
Args:
fn (Cell): The fn that takes Tensor inputs and returns a tuple of Tensors or a Tensor.
Inputs:
- **inputs** (Tensors) - The inputs to `fn`.
- **v** (Tensors or Tuple of Tensors) - The vector for which the Jacobian vector product is computed.
Must have the same size as the input of `fn`.
Outputs:
A tuple with 2 Tensors or Tuple of Tensors:
- **net_output** (Tensors or Tuple of Tensors) - The output of `fn(inputs)`.
- **jvp** (Tensors or Tuple of Tensors) - The result of the jacobian vector product.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore.nn import Jvp
>>> class Net(nn.Cell):
... def construct(self, x, y):
... return x**3 + y
>>> x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
>>> y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
>>> v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32))
>>> output = Jvp(Net())(x, y, (v, v))
>>> print(output[0])
[[ 2. 10.]
[30. 68.]]
>>> print(output[1])
[[ 4. 13.]
[28. 49.]]
"""
def __init__(self, fn):
super(Jvp, self).__init__()
self.fn = fn
self.oneslike = P.OnesLike()
self.first_grad = _FirstGrad(fn)
self.first_grad.add_flags(enable_tuple_grad_first=True)
self.first_grad_single_value = _FirstGradSingleValue(fn)
self.first_grad_single_value.add_flags(enable_tuple_grad_first=True)
self.second_grad_op = C.GradOperation(sens_param=True)
self.issubclass_ = P.IsSubClass()
self.typeof = Primitive('typeof')
self.make_tuple = Primitive('MakeTuple')
self.tuple_len = Primitive("tuple_len")
@ms_function
def construct(self, *args):
jvp_input = args[0:-1]
v = args[-1]
output = self.fn(*jvp_input)
if self.issubclass_(self.typeof(output), mstype.tuple_):
u = self.make_tuple()
for i in range(self.tuple_len(output)):
u = u + self.make_tuple(self.oneslike(output[i]))
else:
u = self.oneslike(output)
if self.tuple_len(jvp_input) == 1:
second_gradient_net = self.second_grad_op(self.first_grad_single_value)
gradient_output = second_gradient_net(u, jvp_input, v)
else:
second_gradient_net = self.second_grad_op(self.first_grad)
gradient_output = second_gradient_net(u, jvp_input, v)
return output, gradient_output
class _JvpInner(Cell):
"""
Compute the jacobian-vector-product of the given network. Jvp is equivalent to forward mode autodiff.
This class implements the inner process of function jvp.
"""
def __init__(self):
super(_JvpInner, self).__init__()
self.oneslike = P.OnesLike()
self.first_grad = _JvpFirstGrad()
self.first_grad.add_flags(enable_tuple_grad_first=True)
self.first_grad_single_value = _JvpFirstGradSingleValue()
self.first_grad_single_value.add_flags(enable_tuple_grad_first=True)
self.second_grad_op = C.GradOperation(sens_param=True)
self.issubclass_ = P.IsSubClass()
self.typeof = Primitive('typeof')
self.make_tuple = Primitive('MakeTuple')
self.tuple_len = Primitive("tuple_len")
def construct(self, *args):
fn = args[0]
v = args[1]
jvp_input = args[2:]
output = fn(*jvp_input)
if self.issubclass_(self.typeof(output), mstype.tuple_):
u = self.make_tuple()
for i in range(self.tuple_len(output)):
u = u + self.make_tuple(self.oneslike(output[i]))
else:
u = self.oneslike(output)
if self.tuple_len(jvp_input) == 1:
second_gradient_net = self.second_grad_op(self.first_grad_single_value)
gradient_output = second_gradient_net(u, fn, jvp_input, v)
else:
second_gradient_net = self.second_grad_op(self.first_grad)
gradient_output = second_gradient_net(u, fn, jvp_input, v)
return output, gradient_output
[文档]class Vjp(Cell):
"""
Computes the dot product between a vector `v` and the Jacobian of the given fn at the point
given by the inputs.
Args:
fn (Cell): The fn that takes Tensor inputs and returns a tuple of Tensors or a Tensor.
Inputs:
- **inputs** (Tensors) - The inputs to `fn`. Must be a tuple or a list.
- **v** (Tensors or Tuple of Tensors) - The vector for which the vector Jacobian product is computed.
Must have the same size as the output of `fn`.
Outputs:
A tuple with 2 Tensors or Tuple of Tensors:
- **net_output** (Tensors or Tuple of Tensors) - The output of `fn(inputs)`.
- **vjp** (Tensors or Tuple of Tensors) - The result of the dot product.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore.nn import Vjp
>>> class Net(nn.Cell):
... def construct(self, x, y):
... return x**3 + y
>>> x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
>>> y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
>>> v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32))
>>> output = Vjp(Net())(x, y, v)
>>> print(output[0])
[[ 2. 10.]
[30. 68.]]
>>> print(output[1][0])
[[ 3. 12.]
[27. 48.]]
>>> print(output[1][1])
[[1. 1.]
[1. 1.]]
"""
def __init__(self, fn):
super(Vjp, self).__init__()
self.fn = fn
self.grad = C.GradOperation(get_all=True, sens_param=True)
self.grad_single_value = C.GradOperation(sens_param=True)
self.issubclass_ = P.IsSubClass()
self.typeof = Primitive('typeof')
self.tuple_len = Primitive("tuple_len")
@ms_function
def construct(self, *args):
front_input = args[0:-1]
output = self.fn(*front_input)
if self.tuple_len(front_input) == 1:
gradient_output = self.grad_single_value(self.fn)(*args)
else:
gradient_output = self.grad(self.fn)(*args)
return output, gradient_output
class _VjpInner(Cell):
"""
Computes the dot product between a vector `v` and the Jacobian of the given network at the point
given by the inputs. This class implements the inner process of function vjp.
"""
def __init__(self):
super(_VjpInner, self).__init__()
self.grad = C.GradOperation(get_all=True, sens_param=True)
self.grad_single_value = C.GradOperation(sens_param=True)
self.tuple_len = Primitive("tuple_len")
def construct(self, *args):
fn = args[0]
front_input = args[1:-1]
input_with_v = args[1:]
output = fn(*front_input)
if self.tuple_len(front_input) == 1:
gradient_output = self.grad_single_value(fn)(*input_with_v)
else:
gradient_output = self.grad(fn)(*input_with_v)
return output, gradient_output