mindspore.ops.tensor_scatter_mul

查看源文件
mindspore.ops.tensor_scatter_mul(input_x, indices, updates)[源代码]

根据索引,通过乘法运算得到输出Tensor的值。更新后的结果是通过算子output返回,而不是直接原地更新input。

indices 的最后一个轴是每个索引向量的深度。对于每个索引向量, updates 中必须有相应的值。 updates 的shape应该等于 input_x[indices] 的shape。有关更多详细信息,请参见样例。

说明

  • 如果 indices 的某些值超出 input_x 的维度范围,则相应的 updates 不会更新为 input_x ,而不是抛出索引错误。

\[output\left [indices \right ] = input\_x\times update\]
参数:
  • input_x (Tensor) - 输入Tensor。 input_x 的维度必须不小于 indices.shape[-1]

  • indices (Tensor) - input_x 执行scatter操作的目标索引,数据类型为int32或int64,rank必须大于等于2。

  • updates (Tensor) - 指定与 input_x 相加操作的Tensor,其数据类型与 input_x 相同。并且shape应等于 \(indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]\)

返回:

Tensor,shape和数据类型与输入 input_x 相同。

异常:
  • TypeError - indices 的数据类型不满足int32或int64。

  • ValueError - input_x 的rank小于 indices.shape的最后一维。

  • RuntimeError - indices 中的值超出了 input_x 的索引范围。

支持平台:

GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32)
>>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32)
>>> # Next, demonstrate the approximate operation process of this operator:
>>> # 1, indices[0] = [0, 0], indices[1] = [0, 0]
>>> # 2, And input_x[0, 0] = -0.1
>>> # 3, So input_x[indices] = [-0.1, -0.1]
>>> # 4, Satisfy the above formula: input_x[indices].shape=(2) == updates.shape=(2)
>>> # 5, Perform the multiply operation for the first time:
>>> #      first_input_x = input_x[0][0] * updates[0] = [[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]
>>> # 6, Perform the multiply operation for the second time:
>>> #      second_input_x = input_x[0][0] * updates[1] = [[-0.22, 0.3, 3.6], [0.4, 0.5, -3.2]]
>>> output = ops.tensor_scatter_mul(input_x, indices, updates)
>>> print(output)
[[-0.22  0.3   3.6  ]
 [ 0.4   0.5   -3.2 ]]