mindspore.ops.SmoothL1Loss
- class mindspore.ops.SmoothL1Loss(beta=1.0, reduction='none')[源代码]
计算平滑L1损失,该L1损失函数有稳健性。
更多参考详见
mindspore.ops.smooth_l1_loss()
。- 参数:
beta (float,可选) - 控制损失函数在L1损失和L2损失间变换的阈值,该值应大于零。默认值:
1.0
。reduction (str,可选) - 指定应用于输出结果的规约计算方式,可选
'none'
、'mean'
、'sum'
,默认值:'none'
。"none"
:不应用规约方法。"mean"
:计算输出元素的平均值。"sum"
:计算输出元素的总和。
- 输入:
logits (Tensor) - 任意维度输入Tensor。数据类型支持float16或float32。
labels (Tensor) - 真实值。shape和数据类型 与 logits 相同。
- 输出:
Tensor,损失值,与 logits 的shape和数据类型相同。