文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.SmoothL1Loss

查看源文件
class mindspore.ops.SmoothL1Loss(beta=1.0, reduction='none')[源代码]

计算平滑L1损失,该L1损失函数有稳健性。

警告

该API在CPU上性能较差,推荐在Ascend/GPU上运行。

更多参考详见 mindspore.ops.smooth_l1_loss()

参数:
  • beta (number,可选) - 控制损失函数在L1损失和L2损失间变换的阈值,默认值: 1.0

    • Ascend:该值必须大于等于0。

    • CPU/GPU:该值必须大于0。

  • reduction (str,可选) - 指定应用于输出结果的规约计算方式,可选 'none''mean''sum' ,默认值: 'none'

    • "none":不应用规约方法。

    • "mean":计算输出元素的平均值。

    • "sum":计算输出元素的总和。

输入:
  • logits (Tensor) - 任意维度输入Tensor。支持数据类型:

    • Ascend:float16、float32、bfloat16。

    • CPU/GPU:float16、float32、float64。

  • labels (Tensor) - 真实值。

    • CPU/Ascend: 与 logits 的shape相同, logitslabels 遵循隐式类型转换规则,使数据类型一致。

    • GPU: 与 logits 的shape和数据类型相同。

输出:

Tensor,如果 reduction 为'none',则输出Tensor的shape与 input 的shape相同,否则shape为 ()

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> loss = ops.SmoothL1Loss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[0.  0.  0.5]