文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.mint.distributed.reduce_scatter_tensor

查看源文件
mindspore.mint.distributed.reduce_scatter_tensor(output, input, op=ReduceOp.SUM, group=None, async_op=False)[源代码]

规约并且分发指定通信组中的Tensor,返回分发后的Tensor。

说明

在集合的所有过程中,Tensor必须具有相同的shape和格式。

参数:
  • output (Tensor) - 输出分发的Tensor,其shape为 (N/rank_size,)

  • input (Tensor) - 输入待规约且分发的Tensor,假设其shape为 (N,) ,其中 * 为任意数量的额外维度。N必须能够被rank_size整除,rank_size为当前通讯组里面的计算卡数量。

  • op (str, 可选) - 规约的具体操作。如 "sum""prod""max" 、和 "min" 。默认值: ReduceOp.SUM

  • group (str,可选) - 通信组名称,如果为 None ,Ascend平台表示为 "hccl_world_group" 。 默认值: None

  • async_op (bool, 可选) - 本算子是否是异步算子。默认值: False

返回:

CommHandle,若 async_op 是True,CommHandle是一个异步工作句柄。若 async_op 是False,CommHandle将返回None。

异常:
  • TypeError - 首个输入的数据类型不为Tensor,opgroup 不是字符串, async_op 不是bool, op 值非法。

  • ValueError - 如果输入的第一个维度不能被rank size整除。

  • RuntimeError - 如果目标设备无效,或者后端无效,或者分布式初始化失败。

支持平台:

Ascend

样例:

说明

运行以下样例之前,需要配置好通信环境变量。

针对Ascend设备,推荐使用msrun启动方式,无第三方以及配置文件依赖。详见 msrun启动

该样例需要在2卡环境下运行。

>>> import mindspore as ms
>>> from mindspore import Tensor
>>> from mindspore.mint.distributed import init_process_group
>>> from mindspore.mint.distributed import reduce_scatter_tensor
>>> import numpy as np
>>>
>>> ms.set_device(device_target="Ascend")
>>> init_process_group()
>>> input_tensor = Tensor(np.ones([8, 8]).astype(np.float32))
>>> output_tensor = Tensor(np.ones([4, 8]).astype(np.float32))
>>> output = reduce_scatter_tensor(output_tensor ,input_tensor)
>>> print(output_tensor)
[[2. 2. 2. 2. 2. 2. 2. 2.]
[2. 2. 2. 2. 2. 2. 2. 2.]
[2. 2. 2. 2. 2. 2. 2. 2.]
[2. 2. 2. 2. 2. 2. 2. 2.]]