mindspore.mint.nn.functional.normalize
- mindspore.mint.nn.functional.normalize(input, p=2.0, dim=1, eps=1e-12)[source]
Perform normalization of inputs over specified dimension
For a tensor input of sizes \((n_{0},..., n_{dim},..., n_{k})\), each \(n_{dim}\) -element vector v along dimension dim is transformed as
\[v=\frac{v}{\max(\left \| v \right \| _{p},\in )}\]With the default arguments it uses the Euclidean norm over vectors along dimension
1
for normalization.Warning
This is an experimental API that is subject to change or deletion.
- Parameters
- Returns
Tensor, shape and data type are the same as input.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> tensor = Tensor(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]), mindspore.float32) >>> output = mint.nn.functional.normalize(tensor) >>> print(output) [[0.0000 0.4472 0.8944] [0.4243 0.5657 0.7071] [0.4915 0.5735 0.6554]]