mindspore.ops.nansum
- mindspore.ops.nansum(input, axis=None, keepdims=False, *, dtype=None)[source]
Computes sum of input over a given dimension, treating NaNs as zero.
- Parameters
input (Tensor) – The input Tensor.
axis (Union[int, tuple(int)], optional) – The dimensions to reduce. Supposed the rank of input is r, axis must be in the range [-rank(input), rank(input)). Default:
None
, all dimensions are reduced.keepdims (bool, optional) – Whether the output Tensor keeps dimensions or not. Default:
False
.
- Keyword Arguments
dtype (
mindspore.dtype
, optional) – The dtype of output Tensor. Default:None
.- Returns
Tensor, the sum of input input in the given dimension dim, treating NaNs as zero.
If axis is None, keepdims is False, the output is a 0-D Tensor representing the sum of all elements in the input Tensor.
If axis is int, set as 2, and keepdims is False, the shape of output is
.If axis is tuple(int) or list(int), set as (2, 3), and keepdims is False, the shape of output is
.
- Raises
TypeError – If input is not Tensor.
TypeError – If keepdims is not a bool.
TypeError – If the dtype of input or dtype is complex type.
ValueError – If 'axis' not in [-rank(input), rank(input)).
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([[float("nan"), 2, 3], [1, 2, float("nan")]]), mindspore.float32) >>> output1 = ops.nansum(x, axis=0, keepdims=False, dtype=mindspore.float32) >>> output2 = ops.nansum(x, axis=0, keepdims=True, dtype=mindspore.float32) >>> print(output1) [1. 4. 3.] >>> print(output2) [[1. 4. 3.]]