mindspore.ops.nansum
- mindspore.ops.nansum(input, axis=None, keepdims=False, *, dtype=None)[source]
Computes sum of input over a given dimension, ignoring NaN.
- Parameters
input (Tensor) – The input tensor.
axis (Union[int, tuple(int)], optional) – The dimensions to reduce. Supposed the rank of input is r, axis must be in the range [-rank(input), rank(input)). Default
None
, all dimensions are reduced.keepdims (bool, optional) – Whether the output tensor keeps has dim retained. Default
False
.
- Keyword Arguments
dtype (
mindspore.dtype
, optional) – The dtype of output tensor. DefaultNone
.- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> x = mindspore.tensor([[float("nan"), 2, 3], [1, float("nan"), 3], [1, 2, float("nan")]], mindspore.float32) >>> # case1: axis is None, keepdims is False, >>> output1 = mindspore.ops.nansum(x, axis=None, dtype=mindspore.float32) >>> print(output1) 12.0 >>> # case2: axis is int, set as 0, and keepdims is False >>> output2 = mindspore.ops.nansum(x, axis=0, dtype=mindspore.float32) >>> print(output2) [2. 4. 6.] >>> # case3: axis is int, set as 0, and keepdims is False >>> output3 = mindspore.ops.nansum(x, axis=0, keepdims=True, dtype=mindspore.float32) >>> print(output3) [[2. 4. 6.]] >>> # case4: axis is tuple(int) or list(int), set as (0, 1), and keepdims is False >>> output4 = mindspore.ops.nansum(x, axis=(0, 1), dtype=mindspore.float32) >>> print(output4) 12.0