Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.adaptive_avg_pool2d

mindspore.ops.adaptive_avg_pool2d(input, output_size)[source]

Performs 2D adaptive average pooling on a multi-plane input signal. That is, for any input size, the size of the specified output is H x W. The number of output features is equal to the number of input features.

The input and output data format can be “NCHW” and “CHW”. N is the batch size, C is the number of channels, H is the feature height, and W is the feature width.

For adaptive average pooling for 2D:

hstart=floor(iHin/Hout)hend=ceil((i+1)Hin/Hout)wstart=floor(jWin/Wout)wend=ceil((j+1)Win/Wout)Output(i,j)=Input[hstart:hend,wstart:wend](hendhstart)(wendwstart)

Warning

This is an experimental API that is subject to change or deletion.

Parameters
  • input (Tensor) – The input of adaptive_avg_pool2d, which is a 3D or 4D tensor, with float16, float32 or float64 data type.

  • output_size (Union[int, tuple]) – The target output size. output_size can be a tuple (H,W), or an int H for (H,H). H and W can be int or None. If it is None, it means the output size is the same as the input size.

Returns

Tensor, with the same type as the input.

Shape of the output is input_shape[:len(input_shape) - len(out_shape)] + out_shape.

out_shape={input_shape[2]+output_size[1],if output_sizetextis(None,w);output_size[0]+input_shape[1],if output_sizetextis(h,None);input_shape[2:],if output_sizetextis(None,None);(h,h),if output_sizetextish;(h,w),if output_sizetextis(h,w)
Raises
  • ValueError – If output_size is a tuple and the length of output_size is not 2.

  • TypeError – If input is not a Tensor.

  • TypeError – If dtype of input is not float16, float32 or float64.

  • ValueError – If the dimension of input is less than or equal to the dimension of output_size.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> # case 1: output_size=(None, 2)
>>> input = Tensor(np.array([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
...                            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
...                            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]), mindspore.float32)
>>> output = ops.adaptive_avg_pool2d(input, (None, 2))
>>> print(output)
[[[1.5 2.5]
  [4.5 5.5]
  [7.5 8.5]]
 [[1.5 2.5]
  [4.5 5.5]
  [7.5 8.5]]
 [[1.5 2.5]
  [4.5 5.5]
  [7.5 8.5]]]
>>> # case 2: output_size=2
>>> output = ops.adaptive_avg_pool2d(input, 2)
>>> print(output)
[[[3. 4.]
  [6. 7.]]
 [[3. 4.]
  [6. 7.]]
 [[3. 4.]
  [6. 7.]]]
>>> # case 3: output_size=(1, 2)
>>> output = ops.adaptive_avg_pool2d(input, (1, 2))
>>> print(output)
[[[4.5 5.5]]
 [[4.5 5.5]]
 [[4.5 5.5]]]