mindspore.ops.reverse_sequence
- mindspore.ops.reverse_sequence(x, seq_lengths, seq_dim, batch_dim=0)[source]
Reverses variable length slices.
- Parameters
x (Tensor) – The input to reverse, supporting all number types including bool.
seq_lengths (Tensor) – Specified reversing length, must be a 1-D vector with int32 or int64 types.
seq_dim (int) – The dimension where reversal is performed. Required.
batch_dim (int) – The input is sliced in this dimension. Default:
0
.
- Returns
Tensor, with the same shape and data type as x.
- Raises
TypeError – If seq_dim or batch_dim is not an int.
ValueError – If \(len(seq\_lengths) != x.shape[batch\_dim]\).
ValueError – If \(batch\_dim == seq\_dim\).
ValueError – If \(seq\_dim < 0\) or \(seq\_dim >= len(x.shape)\).
ValueError – If \(batch\_dim < 0\) or \(batch\_dim >= len(x.shape)\).
RuntimeError – If any value of seq_lengths is less than 0.
RuntimeError – If any value of seq_lengths is larger than x.shape[seq_dim].
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([1, 2, 3])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=1) >>> print(output) [[1. 2. 3.] [5. 4. 6.] [9. 8. 7.]] >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([1, 2, 3])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=0, batch_dim=1) >>> print(output) [[1. 5. 9.] [4. 2. 6.] [7. 8. 3.]] >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([2, 2, 3])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=1) >>> print(output) [[2. 1. 3.] [5. 4. 6.] [9. 8. 7.]] >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([3, 2, 3])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=1) >>> print(output) [[3. 2. 1.] [5. 4. 6.] [9. 8. 7.]] >>> x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), mindspore.float32) >>> seq_lengths = Tensor(np.array([4, 4])) >>> output = ops.reverse_sequence(x, seq_lengths, seq_dim=1) >>> print(output) [[4. 3. 2. 1.] [8. 7. 6. 5.]]