mindspore.ops.expand_dims

mindspore.ops.expand_dims(input_x, axis)[source]

Adds an additional dimension to input_x at the given axis, the dimension of input_x should be greater than or equal to 1.

Note

If the specified axis is a negative number, the index is counted backward from the end and starts at 1.

Parameters
  • input_x (Tensor) – The shape of tensor is \((x_1, x_2, ..., x_R)\).

  • axis (int) – Specifies the dimension index at which to expand the shape of input_x. The value of axis must be in the range [-input_x.ndim-1, input_x.ndim]. Only constant value is allowed.

Returns

Tensor, the shape of tensor is \((1, x_1, x_2, ..., x_R)\) if the value of axis is 0. It has the same data type as input_x.

Raises
  • TypeError – If axis is not an int.

  • ValueError – If axis is not in the valid range \([-a.ndim-1, a.ndim]\).

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> output = ops.expand_dims(input_tensor, 0)
>>> print(output)
[[[2. 2.]
  [2. 2.]]]