mindspore.ops.rank
- mindspore.ops.rank(input_x)[source]
Returns the rank of a tensor.
Returns a 0-D int32 Tensor representing the rank of input; the rank of a tensor is the number of indices required to uniquely select each element of the tensor.
- Parameters
input_x (Tensor) – The shape of tensor is \((x_1, x_2, ..., x_R)\). The data type is Number.
- Returns
Tensor. 0-D int32 Tensor representing the rank of input, i.e., \(R\). The data type is an int.
- Raises
TypeError – If input_x is not a Tensor.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) >>> output = ops.rank(input_tensor) >>> print(output) 2 >>> print(type(output)) <class 'int'>