mindspore.ops.bessel_k0
- mindspore.ops.bessel_k0(x)[source]
Computes modified Bessel function of the second kind, order 0 element-wise.
The formula is defined as:
\[\begin{split}\begin{array}{ll} \\ K_{0}(x)= \lim_{\nu \to 0} \left(\frac{\pi}{2}\right) \frac {I_{-\nu}(x)-I_{\nu}(x)}{\sin (\nu \pi)} = \int_{0}^{\infty} e^{-x \cosh t} d t \end{array}\end{split}\]where \(I_{0}\) is modified Bessel function of the first kind, order 0.
- Parameters
x (Tensor) – The input tensor. The data type must be float16, float32 or float64.
- Returns
Tensor, has the same shape and dtype as the x.
- Raises
- Supported Platforms:
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([0.5, 1., 2., 4.]), mindspore.float32) >>> output = ops.bessel_k0(x) >>> print(output) [0.92441907 0.42102444 0.11389387 0.01115968]