mindspore.dataset.vision.RandomResizedCropWithBBox
- class mindspore.dataset.vision.RandomResizedCropWithBBox(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=Inter.BILINEAR, max_attempts=10)[source]
Crop the input image to a random size and aspect ratio and adjust bounding boxes accordingly.
- Parameters
size (Union[int, Sequence[int]]) – The size of the output image. The size value(s) must be positive. If size is an integer, a square crop of size (size, size) is returned. If size is a sequence of length 2, it should be (height, width).
scale (Union[list, tuple], optional) – Range (min, max) of respective size of the original size to be cropped, which must be non-negative. Default:
(0.08, 1.0)
.ratio (Union[list, tuple], optional) – Range (min, max) of aspect ratio to be cropped, which must be non-negative. Default:
(3. / 4., 4. / 3.)
.interpolation (Inter, optional) – Image interpolation method defined by
Inter
. Default:Inter.BILINEAR
.max_attempts (int, optional) – The maximum number of attempts to propose a valid crop area. Default:
10
. If exceeded, fall back to use center crop instead.
- Raises
TypeError – If size is not of type int or Sequence[int].
TypeError – If scale is not of type tuple.
TypeError – If ratio is not of type tuple.
TypeError – If interpolation is not of type Inter.
TypeError – If max_attempts is not of type integer.
ValueError – If size is not positive.
ValueError – If scale is negative.
ValueError – If ratio is negative.
ValueError – If max_attempts is not positive.
RuntimeError – If given tensor shape is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.float32) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> func = lambda img: (data, np.array([[0, 0, data.shape[1], data.shape[0]]]).astype(np.float32)) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=[func], ... input_columns=["image"], ... output_columns=["image", "bbox"]) >>> bbox_op = vision.RandomResizedCropWithBBox(size=50, interpolation=Inter.NEAREST) >>> transforms_list = [bbox_op] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, ... input_columns=["image", "bbox"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... print(item["bbox"].shape, item["bbox"].dtype) ... break (50, 50, 3) float32 (1, 4) float32 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.float32) >>> func = lambda img: (data, np.array([[0, 0, data.shape[1], data.shape[0]]]).astype(data.dtype)) >>> func_data, func_bboxes = func(data) >>> output = vision.RandomResizedCropWithBBox((16, 64), (0.5, 0.5), (0.5, 0.5))(func_data, func_bboxes) >>> print(output[0].shape, output[0].dtype) (16, 64, 3) float32 >>> print(output[1].shape, output[1].dtype) (1, 4) float32
- Tutorial Examples: