mindspore.dataset.vision.ConvertColor
- class mindspore.dataset.vision.ConvertColor(convert_mode)[source]
Change the color space of the image.
Supports Ascend hardware acceleration and can be enabled through the .device("Ascend") method.
- Parameters
convert_mode (ConvertMode) –
The mode of image channel conversion.
ConvertMode.COLOR_BGR2BGRA, Convert BGR image to BGRA image.
ConvertMode.COLOR_RGB2RGBA, Convert RGB image to RGBA image.
ConvertMode.COLOR_BGRA2BGR, Convert BGRA image to BGR image.
ConvertMode.COLOR_RGBA2RGB, Convert RGBA image to RGB image.
ConvertMode.COLOR_BGR2RGBA, Convert BGR image to RGBA image.
ConvertMode.COLOR_RGB2BGRA, Convert RGB image to BGRA image.
ConvertMode.COLOR_RGBA2BGR, Convert RGBA image to BGR image.
ConvertMode.COLOR_BGRA2RGB, Convert BGRA image to RGB image.
ConvertMode.COLOR_BGR2RGB, Convert BGR image to RGB image.
ConvertMode.COLOR_RGB2BGR, Convert RGB image to BGR image.
ConvertMode.COLOR_BGRA2RGBA, Convert BGRA image to RGBA image.
ConvertMode.COLOR_RGBA2BGRA, Convert RGBA image to BGRA image.
ConvertMode.COLOR_BGR2GRAY, Convert BGR image to GRAY image.
ConvertMode.COLOR_RGB2GRAY, Convert RGB image to GRAY image.
ConvertMode.COLOR_GRAY2BGR, Convert GRAY image to BGR image.
ConvertMode.COLOR_GRAY2RGB, Convert GRAY image to RGB image.
ConvertMode.COLOR_GRAY2BGRA, Convert GRAY image to BGRA image.
ConvertMode.COLOR_GRAY2RGBA, Convert GRAY image to RGBA image.
ConvertMode.COLOR_BGRA2GRAY, Convert BGRA image to GRAY image.
ConvertMode.COLOR_RGBA2GRAY, Convert RGBA image to GRAY image.
- Raises
TypeError – If convert_mode is not of type
mindspore.dataset.vision.ConvertMode
.RuntimeError – If given tensor shape is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Ascend
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> >>> # Convert RGB images to GRAY images >>> convert_op = vision.ConvertColor(vision.ConvertMode.COLOR_RGB2GRAY) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=convert_op, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100) uint8 >>> # Convert RGB images to BGR images >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> convert_op = vision.ConvertColor(vision.ConvertMode.COLOR_RGB2BGR) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=convert_op, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.ConvertColor(vision.ConvertMode.COLOR_RGB2GRAY)(data) >>> print(output.shape, output.dtype) (100, 100) uint8
- Tutorial Examples:
- device(device_target='CPU')[source]
Set the device for the current operator execution.
When the device is Ascend, input type only supports uint8 , input channel supports 1 and 3. The input data has a height limit of [4, 8192] and a width limit of [6, 4096].
- Parameters
device_target (str, optional) – The operator will be executed on this device. Currently supports
CPU
andAscend
. Default:CPU
.- Raises
TypeError – If device_target is not of type str.
ValueError – If device_target is not within the valid set of ['CPU', 'Ascend'].
- Supported Platforms:
CPU
Ascend
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.ConvertColor(vision.ConvertMode.COLOR_RGB2BGR).device("Ascend")] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.ConvertColor(vision.ConvertMode.COLOR_RGB2BGR).device("Ascend")(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8
- Tutorial Examples: