mindspore.dataset.vision.RandomSharpness
- class mindspore.dataset.vision.RandomSharpness(degrees=(0.1, 1.9))[source]
Adjust the sharpness of the input image by a fixed or random degree. Degree of 0.0 gives a blurred image, degree of 1.0 gives the original image, and degree of 2.0 gives a sharpened image.
- Parameters
degrees (Union[list, tuple], optional) – Range of random sharpness adjustment degrees, which must be non-negative. It should be in (min, max) format. If min=max, then it is a single fixed magnitude operation. Default:
(0.1, 1.9)
.- Raises
TypeError – If degrees is not a list or a tuple.
ValueError – If degrees is negative.
ValueError – If degrees is in (max, min) format instead of (min, max).
- Supported Platforms:
CPU
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.RandomSharpness(degrees=(0.2, 1.9))] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.RandomSharpness(degrees=(0, 0.6))(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8
- Tutorial Examples: