mindspore.nn.ExponentialDecayLR
- class mindspore.nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps, is_stair=False)[source]
Calculates learning rate based on exponential decay function.
For current step, the formula of computing decayed learning rate is:
\[decayed\_learning\_rate = learning\_rate * decay\_rate^{p}\]Where :
\[p = \frac{current\_step}{decay\_steps}\]If is_stair is True, the formula is :
\[p = floor(\frac{current\_step}{decay\_steps})\]- Parameters
- Inputs:
global_step (Tensor) - The current step number.
- Outputs:
Tensor. The learning rate value for the current step with shape \(()\).
- Raises
TypeError – If learning_rate or decay_rate is not a float.
TypeError – If decay_steps is not an int or is_stair is not a bool.
ValueError – If decay_steps is less than 1.
ValueError – If learning_rate or decay_rate is less than or equal to 0.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> from mindspore import Tensor, nn >>> >>> learning_rate = 0.1 >>> decay_rate = 0.9 >>> decay_steps = 4 >>> global_step = Tensor(2, mindspore.int32) >>> exponential_decay_lr = nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps) >>> lr = exponential_decay_lr(global_step) >>> net = nn.Dense(2, 3) >>> optim = nn.SGD(net.trainable_params(), learning_rate=lr)