mindspore.dataset.transforms.OneHot
- class mindspore.dataset.transforms.OneHot(num_classes, smoothing_rate=0.0)[source]
Apply One-Hot encoding to the input labels.
For a 1-D input of shape \((*)\), an output of shape \((*, num_classes)\) will be returned, where the elements with index values equal to the input values will be set to 1, and the rest will be set to 0. If a label smoothing rate is specified, the element values are further smoothed to enhance generalization.
- Parameters
- Raises
TypeError – If num_classes is not of type int.
TypeError – If smoothing_rate is not of type float.
ValueError – If smoothing_rate is not in range of [0.0, 1.0].
RuntimeError – If input label is not of type int.
RuntimeError – If the dimension of the input label is not 1.
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.transforms as transforms >>> >>> mnist_dataset_dir = "/path/to/mnist_dataset_directory" >>> mnist_dataset = ds.MnistDataset(dataset_dir=mnist_dataset_dir) >>> >>> # Assume that dataset has 10 classes, thus the label ranges from 0 to 9 >>> onehot_op = transforms.OneHot(num_classes=10) >>> mnist_dataset = mnist_dataset.map(operations=onehot_op, input_columns=["label"])