mindspore.dataset.transforms.RandomApply
- class mindspore.dataset.transforms.RandomApply(transforms, prob=0.5)[source]
Randomly perform a series of transforms with a given probability.
- Parameters
- Raises
TypeError – If transforms is not of type list.
ValueError – If transforms is empty.
TypeError – If elements of transforms are neither Python callable objects nor data processing operations in transforms.py.
TypeError – If prob is not of type float.
ValueError – If prob is not in range [0.0, 1.0].
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.transforms as transforms >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.transforms import Compose >>> >>> transforms_list = [vision.RandomHorizontalFlip(0.5), ... vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)), ... vision.RandomErasing()] >>> composed_transform = Compose([vision.Decode(to_pil=True), ... transforms.RandomApply(transforms_list, prob=0.6), ... vision.ToTensor()]) >>> >>> image_folder_dataset = ds.ImageFolderDataset("/path/to/image_folder_dataset_directory") >>> image_folder_dataset = image_folder_dataset.map(operations=composed_transform, input_columns=["image"])