mindspore.ops.split
- mindspore.ops.split(tensor, split_size_or_sections, axis=0)[source]
Splits the Tensor into chunks along the given axis.
- Parameters
tensor (Tensor) – A Tensor to be divided.
split_size_or_sections (Union[int, tuple(int), list(int)]) – If split_size_or_sections is an int type, tensor will be split into equally sized chunks, each chunk with size split_size_or_sections. Last chunk will be smaller than split_size_or_sections if tensor.shape[axis] is not divisible by split_size_or_sections. If split_size_or_sections is a list type, then tensor will be split into len(split_size_or_sections) chunks with sizes split_size_or_sections along the given axis.
axis (int) – The axis along which to split. Default: 0.
- Returns
A tuple of sub-tensors.
- Raises
TypeError – If argument tensor is not Tensor.
TypeError – If argument axis is not Tensor.
ValueError – If argument axis is out of range of \([-tensor.ndim, tensor.ndim)\) .
TypeError – If each element in ‘split_size_or_sections’ is not integer.
TypeError – If argument indices_or_sections is not int, tuple(int) or list(int).
ValueError – The sum of ‘split_size_or_sections’ is not equal to x.shape[axis].
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> input_x = np.arange(9).astype("float32") >>> output = ops.split(Tensor(input_x), 3) >>> print(output) (Tensor(shape=[3], dtype=Float32, value= [ 0.00000000e+00, 1.00000000e+00, 2.00000000e+00]), Tensor(shape=[3], dtype=Float32, value= [ 3.00000000e+00, 4.00000000e+00, 5.00000000e+00]), Tensor(shape=[3], dtype=Float32, value= [ 6.00000000e+00, 7.00000000e+00, 8.00000000e+00]))