mindspore.dataset.EnWik9Dataset
- class mindspore.dataset.EnWik9Dataset(dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=True, num_shards=None, shard_id=None, cache=None)[source]
A source dataset that reads and parses EnWik9 Polarity and EnWik9 Full datasets.
The generated dataset has one column
[text]
with type string.- Parameters
dataset_dir (str) – Path to the root directory that contains the dataset.
num_samples (int, optional) – The number of samples to be included in the dataset. For Polarity dataset, ‘train’ will read from 3,600,000 train samples, ‘test’ will read from 400,000 test samples, ‘all’ will read from all 4,000,000 samples. For Full dataset, ‘train’ will read from 3,000,000 train samples, ‘test’ will read from 650,000 test samples, ‘all’ will read from all 3,650,000 samples. Default: None, will include all samples.
num_parallel_workers (int, optional) – Number of workers to read the data. Default: None, number set in the mindspore.dataset.config.
shuffle (Union[bool, Shuffle], optional) –
Perform reshuffling of the data every epoch. Bool type and Shuffle enum are both supported to pass in. Default: True. If shuffle is False, no shuffling will be performed. If shuffle is True, it is equivalent to setting shuffle to mindspore.dataset.Shuffle.GLOBAL. Set the mode of data shuffling by passing in enumeration variables:
Shuffle.GLOBAL: Shuffle both the files and samples.
Shuffle.FILES: Shuffle files only.
num_shards (int, optional) – Number of shards that the dataset will be divided into. Default: None. When this argument is specified, num_samples reflects the maximum sample number of per shard.
shard_id (int, optional) – The shard ID within num_shards . Default: None. This argument can only be specified when num_shards is also specified.
cache (DatasetCache, optional) – Use tensor caching service to speed up dataset processing. More details: Single-Node Data Cache . Default: None, which means no cache is used.
- Raises
RuntimeError – If dataset_dir does not contain data files.
RuntimeError – If num_shards is specified but shard_id is None.
RuntimeError – If shard_id is specified but num_shards is None.
ValueError – If num_parallel_workers exceeds the max thread numbers.
Examples
>>> en_wik9_dataset_dir = "/path/to/en_wik9_dataset" >>> dataset2 = ds.EnWik9Dataset(dataset_dir=en_wik9_dataset_dir, num_samples=2, ... shuffle=True)
About EnWik9 dataset:
The data of EnWik9 is UTF-8 encoded XML consisting primarily of English text. It contains 243,426 article titles, of which 85,560 are #REDIRECT to fix broken links, and the rest are regular articles.
The data is UTF-8 clean. All characters are in the range U’0000 to U’10FFFF with valid encodings of 1 to 4 bytes. The byte values 0xC0, 0xC1, and 0xF5-0xFF never occur. Also, in the Wikipedia dumps, there are no control characters in the range 0x00-0x1F except for 0x09 (tab) and 0x0A (linefeed). Linebreaks occur only on paragraph boundaries, so they always have a semantic purpose.
You can unzip the dataset files into the following directory structure and read by MindSpore’s API.
. └── EnWik9 ├── enwik9
Citation:
@NetworkResource{Hutter_prize, author = {English Wikipedia}, url = "https://cs.fit.edu/~mmahoney/compression/textdata.html", month = {March}, year = {2006} }
Pre-processing Operation
Apply a function in this dataset. |
|
Concatenate the dataset objects in the input list. |
|
Filter dataset by prediction. |
|
Map func to each row in dataset and flatten the result. |
|
Apply each operation in operations to this dataset. |
|
The specified columns will be selected from the dataset and passed into the pipeline with the order specified. |
|
Rename the columns in input datasets. |
|
Repeat this dataset count times. |
|
Reset the dataset for next epoch. |
|
Save the dynamic data processed by the dataset pipeline in common dataset format. |
|
Shuffle the dataset by creating a cache with the size of buffer_size . |
|
Skip the first N elements of this dataset. |
|
Split the dataset into smaller, non-overlapping datasets. |
|
Takes at most given numbers of elements from the dataset. |
|
Zip the datasets in the sense of input tuple of datasets. |
|
Function to create a SentencePieceVocab from source dataset. |
|
Function to create a Vocab from source dataset. |
Batch
Combine batch_size number of consecutive rows into batch which apply per_batch_map to the samples first. |
|
Bucket elements according to their lengths. |
|
Combine batch_size number of consecutive rows into batch which apply pad_info to the samples first. |
Iterator
Create an iterator over the dataset. |
|
Create an iterator over the dataset. |
Attribute
Return the size of batch. |
|
Return the class index. |
|
Return the names of the columns in dataset. |
|
Return the number of batches in an epoch. |
|
Get the replication times in RepeatDataset. |
|
Get the column index, which represents the corresponding relationship between the data column order and the network when using the sink mode. |
|
Get the number of classes in a dataset. |
|
Get the shapes of output data. |
|
Get the types of output data. |
Apply Sampler
Add a child sampler for the current dataset. |
|
Replace the last child sampler of the current dataset, remaining the parent sampler unchanged. |
Others
Return a transferred Dataset that transfers data through a device. |
|
Release a blocking condition and trigger callback with given data. |
|
Add a blocking condition to the input Dataset and a synchronize action will be applied. |
|
Serialize a pipeline into JSON string and dump into file if filename is provided. |