mindspore.dataset.ArgoverseDataset

class mindspore.dataset.ArgoverseDataset(data_dir, column_names='graph', num_parallel_workers=1, shuffle=None, python_multiprocessing=True, perf_mode=True)[source]

Load argoverse dataset and create graph.

Here argoverse dataset is public dataset for autonomous driving, current implement ArgoverseDataset is mainly for loading Motion Forecasting Dataset in argoverse dataset, recommend to visit official website for more detail: https://www.argoverse.org/av1.html#download-link.

Parameters
  • data_dir (str) – directory for loading dataset, here contains origin format data and will be loaded in process method.

  • column_names (Union[str, list[str]], optional) – single column name or list of column names of the dataset, num of column name should be equal to num of item in return data when implement method like __getitem__ , recommend to specify it with column_names=[“edge_index”, “x”, “y”, “cluster”, “valid_len”, “time_step_len”] like the following example.

  • num_parallel_workers (int, optional) – Number of subprocesses used to fetch the dataset in parallel. Default: 1.

  • shuffle (bool, optional) – Whether or not to perform shuffle on the dataset. Default: None, expected order behavior shown in the table below.

  • python_multiprocessing (bool, optional) – Parallelize Python operations with multiple worker process. This option could be beneficial if the Python operation is computational heavy. Default: True.

  • perf_mode (bool, optional) – mode for obtaining higher performance when iterate created dataset(will call __getitem__ method in this process). Default True, will save all the data in graph (like edge index, node feature and graph feature) into graph feature.

Examples

>>> from mindspore.dataset import ArgoverseDataset
>>>
>>> argoverse_dataset_dir = "/path/to/argoverse_dataset_directory"
>>> graph_dataset = ArgoverseDataset(data_dir=argoverse_dataset_dir,
...                                  column_names=["edge_index", "x", "y", "cluster", "valid_len",
...                                                "time_step_len"])
>>> for item in graph_dataset.create_dict_iterator(output_numpy=True, num_epochs=1):
...     pass
load()

Load data from given(processed) path, you can also override this method in your dataset class.

process()[source]

Process method for argoverse dataset, here we load original dataset and create a lot of graphs based on it. Pre-processed method mainly refers to: https://github.com/xk-huang/yet-another-vectornet/blob/master/dataset.py.

save()

Save processed data into disk in numpy.npz format, you can also override this method in your dataset class.

Pre-processing Operation

mindspore.dataset.Dataset.apply

Apply a function in this dataset.

mindspore.dataset.Dataset.concat

Concatenate the dataset objects in the input list.

mindspore.dataset.Dataset.filter

Filter dataset by prediction.

mindspore.dataset.Dataset.flat_map

Map func to each row in dataset and flatten the result.

mindspore.dataset.Dataset.map

Apply each operation in operations to this dataset.

mindspore.dataset.Dataset.project

The specified columns will be selected from the dataset and passed into the pipeline with the order specified.

mindspore.dataset.Dataset.rename

Rename the columns in input datasets.

mindspore.dataset.Dataset.repeat

Repeat this dataset count times.

mindspore.dataset.Dataset.reset

Reset the dataset for next epoch.

mindspore.dataset.Dataset.shuffle

Shuffle the dataset by creating a cache with the size of buffer_size .

mindspore.dataset.Dataset.skip

Skip the first N elements of this dataset.

mindspore.dataset.Dataset.split

Split the dataset into smaller, non-overlapping datasets.

mindspore.dataset.Dataset.take

Takes at most given numbers of elements from the dataset.

mindspore.dataset.Dataset.zip

Zip the datasets in the sense of input tuple of datasets.

Batch

mindspore.dataset.Dataset.batch

Combine batch_size number of consecutive rows into batch which apply per_batch_map to the samples first.

mindspore.dataset.Dataset.bucket_batch_by_length

Bucket elements according to their lengths.

mindspore.dataset.Dataset.padded_batch

Combine batch_size number of consecutive rows into batch which apply pad_info to the samples first.

Iterator

mindspore.dataset.Dataset.create_dict_iterator

Create an iterator over the dataset.

mindspore.dataset.Dataset.create_tuple_iterator

Create an iterator over the dataset.

Attribute

mindspore.dataset.Dataset.get_batch_size

Return the size of batch.

mindspore.dataset.Dataset.get_class_indexing

Return the class index.

mindspore.dataset.Dataset.get_col_names

Return the names of the columns in dataset.

mindspore.dataset.Dataset.get_dataset_size

Return the number of batches in an epoch.

mindspore.dataset.Dataset.get_repeat_count

Get the replication times in RepeatDataset.

mindspore.dataset.Dataset.input_indexs

Get the column index, which represents the corresponding relationship between the data column order and the network when using the sink mode.

mindspore.dataset.Dataset.num_classes

Get the number of classes in a dataset.

mindspore.dataset.Dataset.output_shapes

Get the shapes of output data.

mindspore.dataset.Dataset.output_types

Get the types of output data.

Apply Sampler

mindspore.dataset.MappableDataset.add_sampler

Add a child sampler for the current dataset.

mindspore.dataset.MappableDataset.use_sampler

Replace the last child sampler of the current dataset, remaining the parent sampler unchanged.

Others

mindspore.dataset.Dataset.device_que

Return a transferred Dataset that transfers data through a device.

mindspore.dataset.Dataset.sync_update

Release a blocking condition and trigger callback with given data.

mindspore.dataset.Dataset.sync_wait

Add a blocking condition to the input Dataset and a synchronize action will be applied.

mindspore.dataset.Dataset.to_json

Serialize a pipeline into JSON string and dump into file if filename is provided.