mindspore.nn.HausdorffDistance

class mindspore.nn.HausdorffDistance(distance_metric='euclidean', percentile=None, directed=False, crop=True)[source]

Calculates the Hausdorff distance. Hausdorff distance is the maximum and minimum distance between two point sets. Given two feature sets A and B, the Hausdorff distance between two point sets A and B is defined as follows:

\[\begin{split}\begin{array}{ll} \\ H(A, B) = \text{max}[h(A, B), h(B, A)]\\ h(A, B) = \underset{a \in A}{\text{max}}\{\underset{b \in B}{\text{min}} \rVert a - b \rVert \}\\ h(B, A) = \underset{b \in B}{\text{max}}\{\underset{a \in A}{\text{min}} \rVert b - a \rVert \} \end{array}\end{split}\]

where h(A,B) is the maximum distance of a set A to the nearest point in the set B, h(B,A) is the maximum distance of a set B to the nearest point in the set A. The distance calculation is oriented, which means that most of times \(h(A, B)\) is not equal to \(h(B, A)\).

Parameters
  • distance_metric (string) – Three distance measurement methods are supported: “euclidean”, “chessboard” or “taxicab”. Default: “euclidean”.

  • percentile (float) – Floating point numbers between 0 and 100. Specify the percentile parameter to get the percentile of the Hausdorff distance. Default: None.

  • directed (bool) – If True, it only calculates h(y_pred, y) distance, otherwise, max(h(y_pred, y), h(y, y_pred)) will be returned. Default: False.

  • crop (bool) – Crop input images and only keep the foregrounds. In order to maintain two inputs’ shapes, here the bounding box is achieved by (y_pred | y) which represents the union set of two images. Default: True.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> from mindspore import nn, Tensor
>>>
>>> x = Tensor(np.array([[3, 0, 1], [1, 3, 0], [1, 0, 2]]))
>>> y = Tensor(np.array([[0, 2, 1], [1, 2, 1], [0, 0, 1]]))
>>> metric = nn.HausdorffDistance()
>>> metric.clear()
>>> metric.update(x, y, 0)
>>> mean_average_distance = metric.eval()
>>> print(mean_average_distance)
1.4142135623730951
clear()[source]

Clears the internal evaluation result.

eval()[source]

Calculate the no-directed or directed Hausdorff distance.

Returns

numpy.float64, the hausdorff distance.

Raises

RuntimeError – If the update method is not called first, an error will be reported.

update(*inputs)[source]

Updates the internal evaluation result with the inputs: ‘y_pred’, ‘y’ and ‘label_idx’.

Parameters

inputs – Input ‘y_pred’, ‘y’ and ‘label_idx’. ‘y_pred’ and ‘y’ are a Tensor, list or numpy.ndarray. ‘y_pred’ is the predicted binary image. ‘y’ is the actual binary image. Data type of ‘label_idx’ is int or float.

Raises
  • ValueError – If the number of the inputs is not 3.

  • TypeError – If the data type of label_idx is not int or float.

  • ValueError – If the value of label_idx is not in y_pred or y.

  • ValueError – If y_pred and y have different shapes.